Datasets:
Updated Readme
Browse files
README.md
CHANGED
@@ -181,22 +181,18 @@ The competition is hosted in the [Robust Reading Competition website](https://rr
|
|
181 |
|
182 |
The dataset contains five subtask or skills:
|
183 |
|
184 |
-
### Sequence Filling
|
185 |
-
|
186 |
<details>
|
187 |
|
188 |
-
<summary>
|
189 |
|
190 |

|
191 |
|
192 |
Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to select the panel that best fits the sequence.
|
193 |
</details>
|
194 |
|
195 |
-
### Character Coherence, Visual Closure, Text Closure
|
196 |
-
|
197 |
<details>
|
198 |
|
199 |
-
<summary>
|
200 |
|
201 |

|
202 |
|
@@ -207,11 +203,9 @@ These skills require understanding the context sequence to then pick the best pa
|
|
207 |
|
208 |
</details>
|
209 |
|
210 |
-
### Caption Relevance
|
211 |
-
|
212 |
<details>
|
213 |
|
214 |
-
<summary>
|
215 |
|
216 |

|
217 |
|
@@ -472,7 +466,7 @@ for skill in skills:
|
|
472 |
total = 0
|
473 |
for example in dataset:
|
474 |
# Your model prediction
|
475 |
-
prediction = model.generate(example)
|
476 |
prediction = post_process(prediction)
|
477 |
if prediction == example["solution_index"]:
|
478 |
correct += 1
|
@@ -492,6 +486,10 @@ print(f"Overall accuracy: {overall_accuracy}")
|
|
492 |
|
493 |
</details>
|
494 |
|
|
|
|
|
|
|
|
|
495 |
|
496 |
## Citation
|
497 |
_coming soon_
|
|
|
181 |
|
182 |
The dataset contains five subtask or skills:
|
183 |
|
|
|
|
|
184 |
<details>
|
185 |
|
186 |
+
<summary>Sequence Filling</summary>
|
187 |
|
188 |

|
189 |
|
190 |
Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to select the panel that best fits the sequence.
|
191 |
</details>
|
192 |
|
|
|
|
|
193 |
<details>
|
194 |
|
195 |
+
<summary>Character Coherence, Visual Closure, Text Closure</summary>
|
196 |
|
197 |

|
198 |
|
|
|
203 |
|
204 |
</details>
|
205 |
|
|
|
|
|
206 |
<details>
|
207 |
|
208 |
+
<summary>Caption Relevance</summary>
|
209 |
|
210 |

|
211 |
|
|
|
466 |
total = 0
|
467 |
for example in dataset:
|
468 |
# Your model prediction
|
469 |
+
prediction = model.generate(**example)
|
470 |
prediction = post_process(prediction)
|
471 |
if prediction == example["solution_index"]:
|
472 |
correct += 1
|
|
|
486 |
|
487 |
</details>
|
488 |
|
489 |
+
## Baselines
|
490 |
+
|
491 |
+
_Results and Code for baselines coming on 25/02/2025_
|
492 |
+
|
493 |
|
494 |
## Citation
|
495 |
_coming soon_
|