Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 4,243 Bytes
674c6f2
5c9419e
 
 
674c6f2
d80346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a4bfe
 
d80346c
 
a8a4bfe
d80346c
a8a4bfe
 
e61cd57
674c6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e33f5
674c6f2
5c9419e
 
 
 
 
e61cd57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9da996
 
e61cd57
 
c9da996
e61cd57
c9da996
 
674c6f2
d80346c
 
 
 
674c6f2
 
 
 
5c9419e
 
e61cd57
 
 
 
82e33f5
 
674c6f2
82e33f5
 
 
 
 
 
 
6ad3683
70145ba
1ec086b
 
6ad3683
1ec086b
6ad3683
 
70145ba
1ec086b
 
ab25a51
6ad3683
 
 
 
ab25a51
1ec086b
6ad3683
 
70145ba
1ec086b
 
6ad3683
1ec086b
6ad3683
 
1ec086b
 
 
 
 
 
 
 
 
 
 
 
 
6ad3683
 
1ec086b
 
6ad3683
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
language:
- en
pretty_name: 'Comics: Pick-A-Panel'
dataset_info:
- config_name: caption_relevance
  features:
  - name: sample_id
    dtype: string
  - name: context
    sequence: image
  - name: options
    sequence: image
  - name: index
    dtype: int32
  - name: solution_index
    dtype: int32
  - name: split
    dtype: string
  - name: task_type
    dtype: string
  - name: previous_panel_caption
    dtype: string
  splits:
  - name: val
    num_bytes: 530646519.0
    num_examples: 262
  download_size: 530173119
  dataset_size: 530646519.0
- config_name: char_coherence
  features:
  - name: context
    sequence: image
  - name: options
    sequence: image
  - name: index
    dtype: int32
  - name: solution_index
    dtype: int32
  - name: split
    dtype: string
  - name: task_type
    dtype: string
  splits:
  - name: val
    num_bytes: 379247043
    num_examples: 143
  - name: test
    num_bytes: 1139804961.0
    num_examples: 489
  download_size: 1518604969
  dataset_size: 1519052004.0
- config_name: sequence_filling
  features:
  - name: sample_id
    dtype: string
  - name: context
    sequence: image
  - name: options
    sequence: image
  - name: index
    dtype: int32
  - name: solution_index
    dtype: int32
  - name: split
    dtype: string
  - name: task_type
    dtype: string
  - name: previous_panel_caption
    dtype: string
  splits:
  - name: val
    num_bytes: 1230081698.0
    num_examples: 262
  download_size: 1032358336
  dataset_size: 1230081698.0
configs:
- config_name: caption_relevance
  data_files:
  - split: val
    path: caption_relevance/val-*
- config_name: char_coherence
  data_files:
  - split: val
    path: char_coherence/val-*
  - split: test
    path: char_coherence/test-*
- config_name: sequence_filling
  data_files:
  - split: val
    path: sequence_filling/val-*
tags:
- comics
---

# Comics: Pick-A-Panel

This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction)

The dataset contains five subtask or skills:

### Sequence Filling
![Sequence Filling](figures/seq_filling.png)
<details>
<summary>Task Description</summary>
Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to select the panel that best fits the sequence.
</details>

### Character Coherence, Visual Closure, Text Closure
![Character Coherence](figures/closure.png)
<details>
<summary>Task Description</summary>

These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text:
- Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles is has been swapped.
- Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements.
- Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.

</details>

### Caption Relevance
![Caption Relevance](figures/caption_relevance.png)
<details>
<summary>Task Description</summary>
Given a caption from the previous panel, select the panel that best continues the story.
</details>

## Loading the Data

```python
from datasets import load_dataset

skill = "seq_filling" # "seq_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "test"
dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split)
```

<details>
<summary>Map to single images</summary>
If your model can only process single images, you can render each sample as a single image:

_coming soon_

</details>

## Summit Results and Leaderboard
The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation).

## Citation
_coming soon_