Datasets:
File size: 4,243 Bytes
674c6f2 5c9419e 674c6f2 d80346c a8a4bfe d80346c a8a4bfe d80346c a8a4bfe e61cd57 674c6f2 82e33f5 674c6f2 5c9419e e61cd57 c9da996 e61cd57 c9da996 e61cd57 c9da996 674c6f2 d80346c 674c6f2 5c9419e e61cd57 82e33f5 674c6f2 82e33f5 6ad3683 70145ba 1ec086b 6ad3683 1ec086b 6ad3683 70145ba 1ec086b ab25a51 6ad3683 ab25a51 1ec086b 6ad3683 70145ba 1ec086b 6ad3683 1ec086b 6ad3683 1ec086b 6ad3683 1ec086b 6ad3683 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
language:
- en
pretty_name: 'Comics: Pick-A-Panel'
dataset_info:
- config_name: caption_relevance
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 530646519.0
num_examples: 262
download_size: 530173119
dataset_size: 530646519.0
- config_name: char_coherence
features:
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
splits:
- name: val
num_bytes: 379247043
num_examples: 143
- name: test
num_bytes: 1139804961.0
num_examples: 489
download_size: 1518604969
dataset_size: 1519052004.0
- config_name: sequence_filling
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 1230081698.0
num_examples: 262
download_size: 1032358336
dataset_size: 1230081698.0
configs:
- config_name: caption_relevance
data_files:
- split: val
path: caption_relevance/val-*
- config_name: char_coherence
data_files:
- split: val
path: char_coherence/val-*
- split: test
path: char_coherence/test-*
- config_name: sequence_filling
data_files:
- split: val
path: sequence_filling/val-*
tags:
- comics
---
# Comics: Pick-A-Panel
This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction)
The dataset contains five subtask or skills:
### Sequence Filling

<details>
<summary>Task Description</summary>
Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to select the panel that best fits the sequence.
</details>
### Character Coherence, Visual Closure, Text Closure

<details>
<summary>Task Description</summary>
These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text:
- Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles is has been swapped.
- Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements.
- Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.
</details>
### Caption Relevance

<details>
<summary>Task Description</summary>
Given a caption from the previous panel, select the panel that best continues the story.
</details>
## Loading the Data
```python
from datasets import load_dataset
skill = "seq_filling" # "seq_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "test"
dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split)
```
<details>
<summary>Map to single images</summary>
If your model can only process single images, you can render each sample as a single image:
_coming soon_
</details>
## Summit Results and Leaderboard
The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation).
## Citation
_coming soon_ |