Datasets:

Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
License:
File size: 5,775 Bytes
64af0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f92c19
64af0ae
6f92c19
64af0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f92c19
 
 
 
64af0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules."""


import json
import os

import datasets


_CITATION = """\
@misc{saeidi2018interpretation,
      title={Interpretation of Natural Language Rules in Conversational Machine Reading},
      author={Marzieh Saeidi and Max Bartolo and Patrick Lewis and Sameer Singh and Tim Rocktäschel and Mike Sheldon and Guillaume Bouchard and Sebastian Riedel},
      year={2018},
      eprint={1809.01494},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
ShARC is a Conversational Question Answering dataset focussing on question answering from texts containing rules. \
The goal is to answer questions by possibly asking follow-up questions first. It is assumed assume that the question is often underspecified, \
in the sense that the question does not provide enough information to be answered directly. However, an agent can use the supporting rule text to \
infer what needs to be asked in order to determine the final answer.
"""

_URL = "https://sharc-data.github.io/data/sharc1-official.zip"


class Sharc(datasets.GeneratorBasedBuilder):
    """ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules."""

    VERSION = datasets.Version("1.0.1")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="sharc", version=datasets.Version("1.0.1")),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "utterance_id": datasets.Value("string"),
                    "source_url": datasets.Value("string"),
                    "snippet": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "scenario": datasets.Value("string"),
                    "history": [
                        {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")}
                    ],
                    "evidence": [
                        {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")}
                    ],
                    "answer": datasets.Value("string"),
                    "negative_question": datasets.Value("bool_"),
                    "negative_scenario": datasets.Value("bool_"),
                }
            ),
            supervised_keys=None,
            homepage="https://sharc-data.github.io/index.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        extracted_path = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "dev"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "test"},
            ),
        ]

    def _generate_examples(self, data_dir, split):
        with open(
            os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_scenario_utterance_ids.txt"),
            encoding="utf-8",
        ) as f:
            negative_scenario_ids = f.readlines()
            negative_scenario_ids = [id_.strip() for id_ in negative_scenario_ids]
        with open(
            os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_question_utterance_ids.txt"),
            encoding="utf-8",
        ) as f:
            negative_question_ids = f.readlines()
            negative_question_ids = [id_.strip() for id_ in negative_question_ids]

        data_file = os.path.join(data_dir, "json", f"sharc_{split}.json")
        with open(data_file, encoding="utf-8") as f:
            examples = json.load(f)
            for i, example in enumerate(examples):
                example.pop("tree_id")

                example["negative_question"] = example["utterance_id"] in negative_question_ids
                example["negative_scenario"] = example["utterance_id"] in negative_scenario_ids

                example["id"] = example["utterance_id"]

                # the keys are misspelled for one of the example in dev set
                # fix it here
                for evidence in example["evidence"]:
                    if evidence.get("followup_answer") is not None:
                        evidence["follow_up_answer"] = evidence.pop("followup_answer")
                    if evidence.get("followup_question") is not None:
                        evidence["follow_up_question"] = evidence.pop("followup_question")
                yield example["id"], example