Srikant86 commited on
Commit
2c4cd2d
·
1 Parent(s): 8770c83

ntu file removed and readme udpated

Browse files
Files changed (3) hide show
  1. README.md +180 -0
  2. json/fine_grained_pose.json +0 -0
  3. video/ntu.zip +0 -3
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ extra_gated_prompt: >-
4
+ You agree to not use the dataset to conduct experiments that cause harm to
5
+ human subjects. Please note that the data in this dataset may be subject to
6
+ other agreements. Before using the data, be sure to read the relevant
7
+ agreements carefully to ensure compliant use. Video copyrights belong to the
8
+ original video creators or platforms and are for academic research use only.
9
+ task_categories:
10
+ - visual-question-answering
11
+ extra_gated_fields:
12
+ Name: text
13
+ Company/Organization: text
14
+ Country: text
15
+ E-Mail: text
16
+ modalities:
17
+ - Video
18
+ - Text
19
+ configs:
20
+ - config_name: action_sequence
21
+ data_files: json/action_sequence.json
22
+ - config_name: moving_count
23
+ data_files: json/moving_count.json
24
+ - config_name: action_prediction
25
+ data_files: json/action_prediction.json
26
+ - config_name: episodic_reasoning
27
+ data_files: json/episodic_reasoning.json
28
+ - config_name: action_antonym
29
+ data_files: json/action_antonym.json
30
+ - config_name: action_count
31
+ data_files: json/action_count.json
32
+ - config_name: scene_transition
33
+ data_files: json/scene_transition.json
34
+ - config_name: object_shuffle
35
+ data_files: json/object_shuffle.json
36
+ - config_name: object_existence
37
+ data_files: json/object_existence.json
38
+ - config_name: unexpected_action
39
+ data_files: json/unexpected_action.json
40
+ - config_name: moving_direction
41
+ data_files: json/moving_direction.json
42
+ - config_name: state_change
43
+ data_files: json/state_change.json
44
+ - config_name: object_interaction
45
+ data_files: json/object_interaction.json
46
+ - config_name: character_order
47
+ data_files: json/character_order.json
48
+ - config_name: action_localization
49
+ data_files: json/action_localization.json
50
+ - config_name: counterfactual_inference
51
+ data_files: json/counterfactual_inference.json
52
+ - config_name: fine_grained_action
53
+ data_files: json/fine_grained_action.json
54
+ - config_name: moving_attribute
55
+ data_files: json/moving_attribute.json
56
+ - config_name: egocentric_navigation
57
+ data_files: json/egocentric_navigation.json
58
+ language:
59
+ - en
60
+ size_categories:
61
+ - 1K<n<10K
62
+ ---
63
+ # MVTamperBench Dataset
64
+
65
+ ## Overview
66
+
67
+ **MVTamperBenchStart** is a robust benchmark designed to evaluate Vision-Language Models (VLMs) against adversarial video tampering effects. It leverages the diverse and well-structured MVBench dataset, systematically augmented with four distinct tampering techniques:
68
+
69
+ 1. **Masking**: Overlays a black rectangle on a 1-second segment, simulating visual data loss.
70
+ 2. **Repetition**: Repeats a 1-second segment, introducing temporal redundancy.
71
+ 3. **Rotation**: Rotates a 1-second segment by 180 degrees, introducing spatial distortion.
72
+ 4. **Substitution**: Replaces a 1-second segment with a random clip from another video, disrupting the temporal and contextual flow.
73
+
74
+ The tampering effects are applied to the middle of each video to ensure consistent evaluation across models.
75
+
76
+ ---
77
+
78
+ ## Dataset Details
79
+
80
+ The MVTamperBenchStart dataset is built upon the **MVBench dataset**, a widely recognized collection used in video-language evaluation. It features a broad spectrum of content to ensure robust model evaluation, including:
81
+
82
+ - **Content Diversity**: Spanning a variety of objects, activities, and settings.
83
+ - **Temporal Dynamics**: Videos with temporal dependencies for coherence testing.
84
+ - **Benchmark Utility**: Recognized datasets enabling comparisons with prior work.
85
+
86
+ ### Incorporated Datasets
87
+
88
+ The MVTamperBenchStart dataset integrates videos from several sources, each contributing unique characteristics:
89
+
90
+ | Dataset Name | Primary Scene Type and Unique Characteristics |
91
+ |----------------------|-------------------------------------------------------------------------|
92
+ | STAR | Indoor actions and object interactions |
93
+ | PAXION | Real-world scenes with nuanced actions |
94
+ | Moments in Time (MiT) V1 | Indoor/outdoor scenes across varied contexts |
95
+ | FunQA | Humor-focused, creative, real-world events |
96
+ | CLEVRER | Simulated scenes for object movement and reasoning |
97
+ | Perception Test | First/third-person views for object tracking |
98
+ | Charades-STA | Indoor human actions and interactions |
99
+ | MoVQA | Diverse scenes for scene transition comprehension |
100
+ | VLN-CE | Indoor navigation from agent perspective |
101
+ | TVQA | TV show scenes for episodic reasoning |
102
+
103
+ ### Dataset Expansion
104
+
105
+ The original MVBench dataset contains 3,487 videos, which have been systematically expanded through tampering effects, resulting in a total(original+tampered) of **17,435 videos**. This ensures:
106
+
107
+ - **Diversity**: Varied adversarial challenges for robust evaluation.
108
+ - **Volume**: Sufficient data for training and testing.
109
+
110
+ Below is a visual representation of the tampered video length distribution:
111
+
112
+ ![Tampered Video Length Distribution](./assert/tampered_video_length_distribution.png "Distribution of tampered video lengths")
113
+
114
+ ---
115
+
116
+ ## Benchmark Construction
117
+
118
+ MVTamperBench is built with modularity, scalability, and reproducibility at its core:
119
+
120
+ - **Modularity**: Each tampering effect is implemented as a reusable class, allowing for easy adaptation.
121
+ - **Scalability**: Supports customizable tampering parameters, such as location and duration.
122
+ - **Integration**: Fully compatible with VLMEvalKit, enabling seamless evaluations of tampering robustness alongside general VLM capabilities.
123
+
124
+ By maintaining consistent tampering duration (1 second) and location (center of the video), MVTamperBench ensures fair and comparable evaluations across models.
125
+
126
+ ---
127
+
128
+ ## Download Dataset
129
+
130
+ You can access the MVTamperBenchStart dataset directly from the Hugging Face repository:
131
+
132
+ [Download MVTamperBenchStart Dataset](https://huggingface.co/datasets/Srikant86/MVTamperBenchStart)
133
+
134
+ ---
135
+
136
+ ## How to Use
137
+
138
+ 1. Clone the Hugging Face repository:
139
+ ```bash
140
+ git clone [https://huggingface.co/datasets/mvtamperbenchstart](https://huggingface.co/datasets/Srikant86/MVTamperBenchStart)
141
+ cd mvtamperbench
142
+ ```
143
+
144
+ 2. Load the dataset using the Hugging Face `datasets` library:
145
+ ```python
146
+ from datasets import load_dataset
147
+
148
+ dataset = load_dataset("mvtamperbenchstart")
149
+ ```
150
+
151
+ 3. Explore the dataset structure and metadata:
152
+ ```python
153
+ print(dataset["train"])
154
+ ```
155
+
156
+ 4. Utilize the dataset for tampering detection tasks, model evaluation, and more.
157
+
158
+ ---
159
+
160
+ ## Citation
161
+
162
+ If you use MVTamperBench in your research, please cite:
163
+
164
+ ```bibtex
165
+ @misc{agarwal2024mvtamperbenchevaluatingrobustnessvisionlanguage,
166
+ title={MVTamperBench: Evaluating Robustness of Vision-Language Models},
167
+ author={Amit Agarwal and Srikant Panda and Angeline Charles and Bhargava Kumar and Hitesh Patel and Priyanranjan Pattnayak and Taki Hasan Rafi and Tejaswini Kumar and Dong-Kyu Chae},
168
+ year={2024},
169
+ eprint={2412.19794},
170
+ archivePrefix={arXiv},
171
+ primaryClass={cs.CV},
172
+ url={https://arxiv.org/abs/2412.19794},
173
+ }
174
+ ```
175
+
176
+ ---
177
+
178
+ ## License
179
+
180
+ MVTamperBenchStart is built upon MVBench and therefore operates under the same license as the original MVBench. For more details, please refer to the [MVBench README](https://huggingface.co/datasets/OpenGVLab/MVBench/blob/main/README.md).
json/fine_grained_pose.json DELETED
The diff for this file is too large to render. See raw diff
 
video/ntu.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:abb90704d61716384ace900e79c24e674130548f3d25608bf12ab8075393226a
3
- size 2877203075