{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Process Utilization Files and Generate a Pickle Files for Plotting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Note that running following scripts is time consuming and should be done only once. The pickle files are provided in the `util_pkl` directory." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pytz\n", "import pickle\n", "import numpy as np\n", "import pandas as pd\n", "\n", "from glob import glob\n", "from pathlib import Path\n", "from utils import cluster_metric_header, dcgm_metric_header\n", "\n", "\"\"\" cluster_metric_header\n", "0: \"CPU\",\n", "1: \"MEMORY\",\n", "2: \"IB_SEND\",\n", "3: \"RECEIVE\",\n", "\"\"\"\n", "\"\"\" dcgm_metric_header\n", "0: XID_ERRORS\n", "1: GPU_TEMP\n", "2: MEMORY_TEMP\n", "3: MEM_CLOCK\n", "4: MEM_COPY_UTIL\n", "5: FB_FREE\n", "6: FB_USED\n", "7: DRAM_ACTIVE\n", "8: POWER_USAGE\n", "9: GPU_UTIL\n", "10: PIPE_TENSOR_ACTIVE\n", "11: SM_ACTIVE\n", "12: SM_OCCUPANCY\n", "\"\"\"\n", "\n", "SAVEPKL = \"./util_pkl\"\n", "\n", "\n", "def read_csv_with_concat(path=\"./csv\", file_name=None):\n", " file = Path(path, f\"{file_name}.csv\")\n", "\n", " if file.exists():\n", " # If original file exists, read it directly\n", " df = pd.read_csv(file)\n", " print(f\"Reading {file_name}\")\n", " else:\n", " # If original file does not exist, read all the split files\n", " split_files = sorted(glob(f\"{path}/{file_name}-2023-*.csv\"))\n", " print(f\"Reading splitted files: {split_files}\")\n", " df = pd.concat([pd.read_csv(split_file) for split_file in split_files])\n", " df.reset_index(drop=True, inplace=True)\n", " return df\n", "\n", "\n", "def read_concat_parse_save_cluster_metrics(path=\"./csv_cpu\", metrics=cluster_metric_header):\n", " for metric in metrics:\n", " data = read_csv_with_concat(path=path, file_name=metric)\n", " data.drop_duplicates(subset=[\"Time\"], inplace=True)\n", " data.sort_values(by=\"Time\", inplace=True)\n", " data[\"Time\"] = pd.to_datetime(data[\"Time\"], unit=\"s\").dt.tz_localize(pytz.utc).dt.tz_convert(\"Asia/Shanghai\")\n", " data.set_index(\"Time\", drop=True, inplace=True)\n", " print(f\"Column Number: {len(list(data.columns))}, {len(set(list(data.columns)))}\")\n", "\n", " if \"NODE_MEMORY\" in metric:\n", " # Around 2 hours has some bug (ip has additional '.1', like '10.140.0.131' -> '10.140.0.131.1')\n", " data = data[(data.index < \"2023-07-19 11:35:00\") | (data.index > \"2023-07-19 14:01:00\")]\n", "\n", " if \"NODE_CPU\" in metric or \"NODE_MEMORY\" in metric:\n", " data = data * 100 # CPU / Memory Utilization (%)\n", "\n", " if \"NODE_IB\" in metric:\n", " data.rename(columns=lambda x: x.replace(\"-mlx5_0\", \"\"), inplace=True) # Simplified, since one IB NIC per server\n", "\n", " data.dropna(axis=1, how=\"all\", inplace=True)\n", " data = data.round(3)\n", " data.to_csv(f\"./{metric}.csv\")\n", "\n", "\n", "def read_concat_parse_save_dcgm_metrics(path=\"./csv\", metrics=dcgm_metric_header):\n", " for metric in metrics:\n", " data = read_csv_with_concat(path=path, file_name=metric)\n", " data.drop_duplicates(subset=[\"Time\"], inplace=True)\n", " data.sort_values(by=\"Time\", inplace=True)\n", " data[\"Time\"] = pd.to_datetime(data[\"Time\"], unit=\"s\").dt.tz_localize(pytz.utc).dt.tz_convert(\"Asia/Shanghai\")\n", " data.set_index(\"Time\", drop=True, inplace=True)\n", " print(f\"Column Number: {len(list(data.columns))}, {len(set(list(data.columns)))}\")\n", "\n", " # if \"XID\" in metric or \"TEMP\" in metric or \"CLOC\" in metric:\n", " # data = data.astype(int, errors='ignore')\n", "\n", " if \"ACTIVE\" in metric or \"OCCUPANCY\" in metric:\n", " data = data * 100 # CPU / Memory Utilization (%)\n", " data = data.round(3)\n", "\n", " if \"POWER\" in metric:\n", " data = data.round(1)\n", "\n", " data.dropna(axis=0, how=\"all\", inplace=True)\n", " data.dropna(axis=1, how=\"all\", inplace=True)\n", " data.to_csv(f\"./{metric}.csv\")\n", "\n", "\n", "def calculate_sum_cdf_axis100(df, dot_num=1000):\n", " \"\"\"\n", " Calculate quantity percentile CDF, y-axis: 0-100%,\n", " \"\"\"\n", " print(\"Parsing\")\n", " data = df.melt(id_vars=\"Time\", var_name=\"Server\")\n", " data.dropna(subset=[\"value\"], inplace=True)\n", "\n", " y = np.linspace(0, 1, num=dot_num)\n", " x = data[\"value\"].quantile(y).values\n", " y = y * 100\n", " return x, y\n", "\n", "\n", "def calculate_num_cdf_axis100(df, dot_num=1000):\n", " \"\"\"\n", " Calculate quantity percentile CDF, y-axis: 0-100%,\n", " \"\"\"\n", " print(\"Parsing\")\n", " data = df.melt(id_vars=\"Time\", var_name=\"Server\")\n", " data.dropna(subset=[\"value\"], inplace=True)\n", " # data.sort_values('value', ascending=True, inplace=True)\n", " # data.reset_index(drop=True, inplace=True)\n", "\n", " y = np.linspace(0, 1, num=dot_num)\n", " x = data[\"value\"].quantile(y).values\n", " y = y * 100\n", " return x, y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1: Prometheus Metics (e.g., CPU and Memory Utilization)\n", "\n", "You can change to any metric you want to plot by changing the `file_name` variable in the following script." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_cpu = read_csv_with_concat(path=\"./seren\", file_name=cluster_metric_header[0])\n", "data_mem = read_csv_with_concat(path=\"./seren\", file_name=cluster_metric_header[1])\n", "x1, y1 = calculate_num_cdf_axis100(data_cpu)\n", "x2, y2 = calculate_num_cdf_axis100(data_mem)\n", "print(\n", " f'CPU Period: (Start) {data_cpu.at[0, \"Time\"].split(\":\")[0]}h (End) {data_cpu.at[len(data_cpu)-1, \"Time\"].split(\":\")[0]}h'\n", ")\n", "print(\n", " f'MEM Period: (Start) {data_mem.at[0, \"Time\"].split(\":\")[0]}h (End) {data_mem.at[len(data_mem)-1, \"Time\"].split(\":\")[0]}h'\n", ")\n", "\n", "with open(f\"{SAVEPKL}/util_cpu_mem_seren.pkl\", \"wb\") as file:\n", " pickle.dump([x1, y1, x2, y2], file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 2: NVIDIA DCGM Metics (e.g., GPU and GPU Memory Utilization)\n", "\n", "You can change to any metric you want to plot by changing the `file_name` variable in the following script." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_gpu_util = read_csv_with_concat(path=\"./seren\", file_name=dcgm_metric_header[9]) # \"DCGM_FI_DEV_GPU_UTIL\"\n", "data_gpu_mem = read_csv_with_concat(path=\"./seren\", file_name=dcgm_metric_header[6]) # \"DCGM_FI_DEV_FB_USED\"\n", "data_gpu_mem.iloc[:, 1:] = 100 * data_gpu_mem.iloc[:, 1:] / (80 * 1024)\n", "x1, y1 = calculate_num_cdf_axis100(data_gpu_util)\n", "x2, y2 = calculate_num_cdf_axis100(data_gpu_mem)\n", "\n", "with open(f\"{SAVEPKL}/util_gpu_util_mem_seren.pkl\", \"wb\") as file:\n", " pickle.dump([x1, y1, x2, y2], file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Processing IPMI Power Files" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df_AB = pd.read_csv(\"./ipmi/GPU_AB_Power.csv\", parse_dates=[\"Time\"])\n", "df_C = pd.read_csv(\"./ipmi/GPU_C_Power.csv\", parse_dates=[\"Time\"])\n", "df_D = pd.read_csv(\"./ipmi/CPU_D_Power.csv\", parse_dates=[\"Time\"])\n", "\n", "df_A = df_AB.dropna()\n", "df_B = df_AB[df_AB.isna().any(axis=1)] # Type B without MEM_Power record\n", "\n", "dfs = {\"GPU_A\": df_A, \"GPU_B\": df_B, \"GPU_C\": df_C, \"CPU_D\": df_D}\n", "\n", "# Extract sys_total_power\n", "df_A_power = df_A[[\"Time\", \"Sys_Total_Power\"]]\n", "df_B_power = df_B[[\"Time\", \"Sys_Total_Power\"]]\n", "df_C_power = df_C[[\"Time\", \"Sys_Total_Power\"]]\n", "df_gpu = pd.concat([df_A_power, df_B_power, df_C_power])\n", "\n", "x1, y1 = calculate_sum_cdf_axis100(df_gpu)\n", "x2, y2 = calculate_sum_cdf_axis100(df_D[[\"Time\", \"Sys_Total_Power\"]])\n", "\n", "with open(f\"./server_power.pkl\", \"wb\") as file:\n", " pickle.dump([x1, y1, x2, y2], file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Processing Philly GPU Utilization Data" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "philly = pd.read_csv(\n", " \"./philly/philly_gpu_util.csv\", on_bad_lines=\"skip\", header=0\n", ") # Please refer to their official repo for the data\n", "cols = list(philly.columns)\n", "philly = philly.drop(columns=[cols[-1]])\n", "philly.reset_index(inplace=True)\n", "philly.columns = cols\n", "philly.rename(columns={\"time\": \"Time\"}, inplace=True)\n", "philly = philly.drop(columns=[cols[1]])\n", "\n", "x1, y1 = calculate_num_cdf_axis100(philly)\n", "with open(f\"{SAVEPKL}/util_gpu_util_philly.pkl\", \"wb\") as file:\n", " pickle.dump([x1, y1], file)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }