Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .gitattributes +5 -0
- .gitignore +114 -0
- LICENSE.txt +395 -0
- README.md +138 -0
- analysis.ipynb +1111 -0
- data/.DS_Store +0 -0
- data/cluster_summary.csv +6 -0
- data/generate_utilization_pkl.ipynb +292 -0
- data/job_trace/trace_kalos.csv +0 -0
- data/job_trace/trace_previous_work/helios_trace.csv +3 -0
- data/job_trace/trace_previous_work/pai_trace.csv +3 -0
- data/job_trace/trace_previous_work/philly_trace.csv +3 -0
- data/job_trace/trace_previous_work/philly_trace_merge_retry.csv +3 -0
- data/job_trace/trace_seren.csv +3 -0
- data/utils.py +106 -0
- figure/bar_job_state.pdf +0 -0
- figure/box_gpu_num.pdf +0 -0
- figure/cdf_job_duration_queue.pdf +0 -0
- figure/cdf_job_duration_util.pdf +0 -0
- figure/cdf_job_gpunum.pdf +0 -0
- figure/cdf_job_jobtime.pdf +0 -0
- figure/cdf_power.pdf +0 -0
- figure/cdf_resource_util.pdf +0 -0
- figure/cdf_temperature.pdf +0 -0
- figure/treemap_job_dist.pdf +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -53,3 +53,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
data/job_trace/trace_previous_work/helios_trace.csv filter=lfs diff=lfs merge=lfs -text
|
57 |
+
data/job_trace/trace_previous_work/pai_trace.csv filter=lfs diff=lfs merge=lfs -text
|
58 |
+
data/job_trace/trace_previous_work/philly_trace.csv filter=lfs diff=lfs merge=lfs -text
|
59 |
+
data/job_trace/trace_previous_work/philly_trace_merge_retry.csv filter=lfs diff=lfs merge=lfs -text
|
60 |
+
data/job_trace/trace_seren.csv filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
MANIFEST
|
27 |
+
|
28 |
+
# PyInstaller
|
29 |
+
# Usually these files are written by a python script from a template
|
30 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
31 |
+
*.manifest
|
32 |
+
*.spec
|
33 |
+
|
34 |
+
# Installer logs
|
35 |
+
pip-log.txt
|
36 |
+
pip-delete-this-directory.txt
|
37 |
+
|
38 |
+
# Unit test / coverage reports
|
39 |
+
htmlcov/
|
40 |
+
.tox/
|
41 |
+
.coverage
|
42 |
+
.coverage.*
|
43 |
+
.cache
|
44 |
+
nosetests.xml
|
45 |
+
coverage.xml
|
46 |
+
*.cover
|
47 |
+
.hypothesis/
|
48 |
+
.pytest_cache/
|
49 |
+
*.out
|
50 |
+
|
51 |
+
# Translations
|
52 |
+
*.mo
|
53 |
+
*.pot
|
54 |
+
|
55 |
+
# Django stuff:
|
56 |
+
*.log
|
57 |
+
local_settings.py
|
58 |
+
db.sqlite3
|
59 |
+
|
60 |
+
# Flask stuff:
|
61 |
+
instance/
|
62 |
+
.webassets-cache
|
63 |
+
|
64 |
+
# Scrapy stuff:
|
65 |
+
.scrapy
|
66 |
+
|
67 |
+
# Sphinx documentation
|
68 |
+
docs/en/_build/
|
69 |
+
docs/zh_cn/_build/
|
70 |
+
|
71 |
+
# PyBuilder
|
72 |
+
target/
|
73 |
+
|
74 |
+
# Jupyter Notebook
|
75 |
+
.ipynb_checkpoints
|
76 |
+
|
77 |
+
# pyenv
|
78 |
+
.python-version
|
79 |
+
|
80 |
+
# celery beat schedule file
|
81 |
+
celerybeat-schedule
|
82 |
+
|
83 |
+
# SageMath parsed files
|
84 |
+
*.sage.py
|
85 |
+
|
86 |
+
# Environments
|
87 |
+
.env
|
88 |
+
.venv
|
89 |
+
env/
|
90 |
+
venv/
|
91 |
+
ENV/
|
92 |
+
env.bak/
|
93 |
+
venv.bak/
|
94 |
+
|
95 |
+
# Spyder project settings
|
96 |
+
.spyderproject
|
97 |
+
.spyproject
|
98 |
+
|
99 |
+
# Rope project settings
|
100 |
+
.ropeproject
|
101 |
+
|
102 |
+
# mkdocs documentation
|
103 |
+
/site
|
104 |
+
|
105 |
+
# test
|
106 |
+
test.json
|
107 |
+
*.out
|
108 |
+
*.inp
|
109 |
+
|
110 |
+
# data/job_trace/trace_previous_work
|
111 |
+
# data/job_trace/trace_seren.csv
|
112 |
+
# data/utilization/ipmi
|
113 |
+
# data/utilization/seren
|
114 |
+
# data/utilization/kalos
|
LICENSE.txt
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Attribution 4.0 International
|
2 |
+
|
3 |
+
=======================================================================
|
4 |
+
|
5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
6 |
+
does not provide legal services or legal advice. Distribution of
|
7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
8 |
+
other relationship. Creative Commons makes its licenses and related
|
9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
10 |
+
warranties regarding its licenses, any material licensed under their
|
11 |
+
terms and conditions, or any related information. Creative Commons
|
12 |
+
disclaims all liability for damages resulting from their use to the
|
13 |
+
fullest extent possible.
|
14 |
+
|
15 |
+
Using Creative Commons Public Licenses
|
16 |
+
|
17 |
+
Creative Commons public licenses provide a standard set of terms and
|
18 |
+
conditions that creators and other rights holders may use to share
|
19 |
+
original works of authorship and other material subject to copyright
|
20 |
+
and certain other rights specified in the public license below. The
|
21 |
+
following considerations are for informational purposes only, are not
|
22 |
+
exhaustive, and do not form part of our licenses.
|
23 |
+
|
24 |
+
Considerations for licensors: Our public licenses are
|
25 |
+
intended for use by those authorized to give the public
|
26 |
+
permission to use material in ways otherwise restricted by
|
27 |
+
copyright and certain other rights. Our licenses are
|
28 |
+
irrevocable. Licensors should read and understand the terms
|
29 |
+
and conditions of the license they choose before applying it.
|
30 |
+
Licensors should also secure all rights necessary before
|
31 |
+
applying our licenses so that the public can reuse the
|
32 |
+
material as expected. Licensors should clearly mark any
|
33 |
+
material not subject to the license. This includes other CC-
|
34 |
+
licensed material, or material used under an exception or
|
35 |
+
limitation to copyright. More considerations for licensors:
|
36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
37 |
+
|
38 |
+
Considerations for the public: By using one of our public
|
39 |
+
licenses, a licensor grants the public permission to use the
|
40 |
+
licensed material under specified terms and conditions. If
|
41 |
+
the licensor's permission is not necessary for any reason--for
|
42 |
+
example, because of any applicable exception or limitation to
|
43 |
+
copyright--then that use is not regulated by the license. Our
|
44 |
+
licenses grant only permissions under copyright and certain
|
45 |
+
other rights that a licensor has authority to grant. Use of
|
46 |
+
the licensed material may still be restricted for other
|
47 |
+
reasons, including because others have copyright or other
|
48 |
+
rights in the material. A licensor may make special requests,
|
49 |
+
such as asking that all changes be marked or described.
|
50 |
+
Although not required by our licenses, you are encouraged to
|
51 |
+
respect those requests where reasonable. More_considerations
|
52 |
+
for the public:
|
53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
54 |
+
|
55 |
+
=======================================================================
|
56 |
+
|
57 |
+
Creative Commons Attribution 4.0 International Public License
|
58 |
+
|
59 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
60 |
+
to be bound by the terms and conditions of this Creative Commons
|
61 |
+
Attribution 4.0 International Public License ("Public License"). To the
|
62 |
+
extent this Public License may be interpreted as a contract, You are
|
63 |
+
granted the Licensed Rights in consideration of Your acceptance of
|
64 |
+
these terms and conditions, and the Licensor grants You such rights in
|
65 |
+
consideration of benefits the Licensor receives from making the
|
66 |
+
Licensed Material available under these terms and conditions.
|
67 |
+
|
68 |
+
|
69 |
+
Section 1 -- Definitions.
|
70 |
+
|
71 |
+
a. Adapted Material means material subject to Copyright and Similar
|
72 |
+
Rights that is derived from or based upon the Licensed Material
|
73 |
+
and in which the Licensed Material is translated, altered,
|
74 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
75 |
+
permission under the Copyright and Similar Rights held by the
|
76 |
+
Licensor. For purposes of this Public License, where the Licensed
|
77 |
+
Material is a musical work, performance, or sound recording,
|
78 |
+
Adapted Material is always produced where the Licensed Material is
|
79 |
+
synched in timed relation with a moving image.
|
80 |
+
|
81 |
+
b. Adapter's License means the license You apply to Your Copyright
|
82 |
+
and Similar Rights in Your contributions to Adapted Material in
|
83 |
+
accordance with the terms and conditions of this Public License.
|
84 |
+
|
85 |
+
c. Copyright and Similar Rights means copyright and/or similar rights
|
86 |
+
closely related to copyright including, without limitation,
|
87 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
88 |
+
Rights, without regard to how the rights are labeled or
|
89 |
+
categorized. For purposes of this Public License, the rights
|
90 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
91 |
+
Rights.
|
92 |
+
|
93 |
+
d. Effective Technological Measures means those measures that, in the
|
94 |
+
absence of proper authority, may not be circumvented under laws
|
95 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
96 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
97 |
+
agreements.
|
98 |
+
|
99 |
+
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
100 |
+
any other exception or limitation to Copyright and Similar Rights
|
101 |
+
that applies to Your use of the Licensed Material.
|
102 |
+
|
103 |
+
f. Licensed Material means the artistic or literary work, database,
|
104 |
+
or other material to which the Licensor applied this Public
|
105 |
+
License.
|
106 |
+
|
107 |
+
g. Licensed Rights means the rights granted to You subject to the
|
108 |
+
terms and conditions of this Public License, which are limited to
|
109 |
+
all Copyright and Similar Rights that apply to Your use of the
|
110 |
+
Licensed Material and that the Licensor has authority to license.
|
111 |
+
|
112 |
+
h. Licensor means the individual(s) or entity(ies) granting rights
|
113 |
+
under this Public License.
|
114 |
+
|
115 |
+
i. Share means to provide material to the public by any means or
|
116 |
+
process that requires permission under the Licensed Rights, such
|
117 |
+
as reproduction, public display, public performance, distribution,
|
118 |
+
dissemination, communication, or importation, and to make material
|
119 |
+
available to the public including in ways that members of the
|
120 |
+
public may access the material from a place and at a time
|
121 |
+
individually chosen by them.
|
122 |
+
|
123 |
+
j. Sui Generis Database Rights means rights other than copyright
|
124 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
125 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
126 |
+
as amended and/or succeeded, as well as other essentially
|
127 |
+
equivalent rights anywhere in the world.
|
128 |
+
|
129 |
+
k. You means the individual or entity exercising the Licensed Rights
|
130 |
+
under this Public License. Your has a corresponding meaning.
|
131 |
+
|
132 |
+
|
133 |
+
Section 2 -- Scope.
|
134 |
+
|
135 |
+
a. License grant.
|
136 |
+
|
137 |
+
1. Subject to the terms and conditions of this Public License,
|
138 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
139 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
140 |
+
exercise the Licensed Rights in the Licensed Material to:
|
141 |
+
|
142 |
+
a. reproduce and Share the Licensed Material, in whole or
|
143 |
+
in part; and
|
144 |
+
|
145 |
+
b. produce, reproduce, and Share Adapted Material.
|
146 |
+
|
147 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
148 |
+
Exceptions and Limitations apply to Your use, this Public
|
149 |
+
License does not apply, and You do not need to comply with
|
150 |
+
its terms and conditions.
|
151 |
+
|
152 |
+
3. Term. The term of this Public License is specified in Section
|
153 |
+
6(a).
|
154 |
+
|
155 |
+
4. Media and formats; technical modifications allowed. The
|
156 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
157 |
+
all media and formats whether now known or hereafter created,
|
158 |
+
and to make technical modifications necessary to do so. The
|
159 |
+
Licensor waives and/or agrees not to assert any right or
|
160 |
+
authority to forbid You from making technical modifications
|
161 |
+
necessary to exercise the Licensed Rights, including
|
162 |
+
technical modifications necessary to circumvent Effective
|
163 |
+
Technological Measures. For purposes of this Public License,
|
164 |
+
simply making modifications authorized by this Section 2(a)
|
165 |
+
(4) never produces Adapted Material.
|
166 |
+
|
167 |
+
5. Downstream recipients.
|
168 |
+
|
169 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
170 |
+
recipient of the Licensed Material automatically
|
171 |
+
receives an offer from the Licensor to exercise the
|
172 |
+
Licensed Rights under the terms and conditions of this
|
173 |
+
Public License.
|
174 |
+
|
175 |
+
b. No downstream restrictions. You may not offer or impose
|
176 |
+
any additional or different terms or conditions on, or
|
177 |
+
apply any Effective Technological Measures to, the
|
178 |
+
Licensed Material if doing so restricts exercise of the
|
179 |
+
Licensed Rights by any recipient of the Licensed
|
180 |
+
Material.
|
181 |
+
|
182 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
183 |
+
may be construed as permission to assert or imply that You
|
184 |
+
are, or that Your use of the Licensed Material is, connected
|
185 |
+
with, or sponsored, endorsed, or granted official status by,
|
186 |
+
the Licensor or others designated to receive attribution as
|
187 |
+
provided in Section 3(a)(1)(A)(i).
|
188 |
+
|
189 |
+
b. Other rights.
|
190 |
+
|
191 |
+
1. Moral rights, such as the right of integrity, are not
|
192 |
+
licensed under this Public License, nor are publicity,
|
193 |
+
privacy, and/or other similar personality rights; however, to
|
194 |
+
the extent possible, the Licensor waives and/or agrees not to
|
195 |
+
assert any such rights held by the Licensor to the limited
|
196 |
+
extent necessary to allow You to exercise the Licensed
|
197 |
+
Rights, but not otherwise.
|
198 |
+
|
199 |
+
2. Patent and trademark rights are not licensed under this
|
200 |
+
Public License.
|
201 |
+
|
202 |
+
3. To the extent possible, the Licensor waives any right to
|
203 |
+
collect royalties from You for the exercise of the Licensed
|
204 |
+
Rights, whether directly or through a collecting society
|
205 |
+
under any voluntary or waivable statutory or compulsory
|
206 |
+
licensing scheme. In all other cases the Licensor expressly
|
207 |
+
reserves any right to collect such royalties.
|
208 |
+
|
209 |
+
|
210 |
+
Section 3 -- License Conditions.
|
211 |
+
|
212 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
213 |
+
following conditions.
|
214 |
+
|
215 |
+
a. Attribution.
|
216 |
+
|
217 |
+
1. If You Share the Licensed Material (including in modified
|
218 |
+
form), You must:
|
219 |
+
|
220 |
+
a. retain the following if it is supplied by the Licensor
|
221 |
+
with the Licensed Material:
|
222 |
+
|
223 |
+
i. identification of the creator(s) of the Licensed
|
224 |
+
Material and any others designated to receive
|
225 |
+
attribution, in any reasonable manner requested by
|
226 |
+
the Licensor (including by pseudonym if
|
227 |
+
designated);
|
228 |
+
|
229 |
+
ii. a copyright notice;
|
230 |
+
|
231 |
+
iii. a notice that refers to this Public License;
|
232 |
+
|
233 |
+
iv. a notice that refers to the disclaimer of
|
234 |
+
warranties;
|
235 |
+
|
236 |
+
v. a URI or hyperlink to the Licensed Material to the
|
237 |
+
extent reasonably practicable;
|
238 |
+
|
239 |
+
b. indicate if You modified the Licensed Material and
|
240 |
+
retain an indication of any previous modifications; and
|
241 |
+
|
242 |
+
c. indicate the Licensed Material is licensed under this
|
243 |
+
Public License, and include the text of, or the URI or
|
244 |
+
hyperlink to, this Public License.
|
245 |
+
|
246 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
247 |
+
reasonable manner based on the medium, means, and context in
|
248 |
+
which You Share the Licensed Material. For example, it may be
|
249 |
+
reasonable to satisfy the conditions by providing a URI or
|
250 |
+
hyperlink to a resource that includes the required
|
251 |
+
information.
|
252 |
+
|
253 |
+
3. If requested by the Licensor, You must remove any of the
|
254 |
+
information required by Section 3(a)(1)(A) to the extent
|
255 |
+
reasonably practicable.
|
256 |
+
|
257 |
+
4. If You Share Adapted Material You produce, the Adapter's
|
258 |
+
License You apply must not prevent recipients of the Adapted
|
259 |
+
Material from complying with this Public License.
|
260 |
+
|
261 |
+
|
262 |
+
Section 4 -- Sui Generis Database Rights.
|
263 |
+
|
264 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
265 |
+
apply to Your use of the Licensed Material:
|
266 |
+
|
267 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
268 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
269 |
+
portion of the contents of the database;
|
270 |
+
|
271 |
+
b. if You include all or a substantial portion of the database
|
272 |
+
contents in a database in which You have Sui Generis Database
|
273 |
+
Rights, then the database in which You have Sui Generis Database
|
274 |
+
Rights (but not its individual contents) is Adapted Material; and
|
275 |
+
|
276 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
277 |
+
all or a substantial portion of the contents of the database.
|
278 |
+
|
279 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
280 |
+
replace Your obligations under this Public License where the Licensed
|
281 |
+
Rights include other Copyright and Similar Rights.
|
282 |
+
|
283 |
+
|
284 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
285 |
+
|
286 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
287 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
288 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
289 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
290 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
291 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
292 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
293 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
294 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
295 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
296 |
+
|
297 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
298 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
299 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
300 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
301 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
302 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
303 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
304 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
305 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
306 |
+
|
307 |
+
c. The disclaimer of warranties and limitation of liability provided
|
308 |
+
above shall be interpreted in a manner that, to the extent
|
309 |
+
possible, most closely approximates an absolute disclaimer and
|
310 |
+
waiver of all liability.
|
311 |
+
|
312 |
+
|
313 |
+
Section 6 -- Term and Termination.
|
314 |
+
|
315 |
+
a. This Public License applies for the term of the Copyright and
|
316 |
+
Similar Rights licensed here. However, if You fail to comply with
|
317 |
+
this Public License, then Your rights under this Public License
|
318 |
+
terminate automatically.
|
319 |
+
|
320 |
+
b. Where Your right to use the Licensed Material has terminated under
|
321 |
+
Section 6(a), it reinstates:
|
322 |
+
|
323 |
+
1. automatically as of the date the violation is cured, provided
|
324 |
+
it is cured within 30 days of Your discovery of the
|
325 |
+
violation; or
|
326 |
+
|
327 |
+
2. upon express reinstatement by the Licensor.
|
328 |
+
|
329 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
330 |
+
right the Licensor may have to seek remedies for Your violations
|
331 |
+
of this Public License.
|
332 |
+
|
333 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
334 |
+
Licensed Material under separate terms or conditions or stop
|
335 |
+
distributing the Licensed Material at any time; however, doing so
|
336 |
+
will not terminate this Public License.
|
337 |
+
|
338 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
339 |
+
License.
|
340 |
+
|
341 |
+
|
342 |
+
Section 7 -- Other Terms and Conditions.
|
343 |
+
|
344 |
+
a. The Licensor shall not be bound by any additional or different
|
345 |
+
terms or conditions communicated by You unless expressly agreed.
|
346 |
+
|
347 |
+
b. Any arrangements, understandings, or agreements regarding the
|
348 |
+
Licensed Material not stated herein are separate from and
|
349 |
+
independent of the terms and conditions of this Public License.
|
350 |
+
|
351 |
+
|
352 |
+
Section 8 -- Interpretation.
|
353 |
+
|
354 |
+
a. For the avoidance of doubt, this Public License does not, and
|
355 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
356 |
+
conditions on any use of the Licensed Material that could lawfully
|
357 |
+
be made without permission under this Public License.
|
358 |
+
|
359 |
+
b. To the extent possible, if any provision of this Public License is
|
360 |
+
deemed unenforceable, it shall be automatically reformed to the
|
361 |
+
minimum extent necessary to make it enforceable. If the provision
|
362 |
+
cannot be reformed, it shall be severed from this Public License
|
363 |
+
without affecting the enforceability of the remaining terms and
|
364 |
+
conditions.
|
365 |
+
|
366 |
+
c. No term or condition of this Public License will be waived and no
|
367 |
+
failure to comply consented to unless expressly agreed to by the
|
368 |
+
Licensor.
|
369 |
+
|
370 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
371 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
372 |
+
that apply to the Licensor or You, including from the legal
|
373 |
+
processes of any jurisdiction or authority.
|
374 |
+
|
375 |
+
|
376 |
+
=======================================================================
|
377 |
+
|
378 |
+
Creative Commons is not a party to its public
|
379 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
380 |
+
its public licenses to material it publishes and in those instances
|
381 |
+
will be considered the “Licensor.” The text of the Creative Commons
|
382 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
383 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
384 |
+
material is shared under a Creative Commons public license or as
|
385 |
+
otherwise permitted by the Creative Commons policies published at
|
386 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
387 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
388 |
+
of Creative Commons without its prior written consent including,
|
389 |
+
without limitation, in connection with any unauthorized modifications
|
390 |
+
to any of its public licenses or any other arrangements,
|
391 |
+
understandings, or agreements concerning use of licensed material. For
|
392 |
+
the avoidance of doubt, this paragraph does not form part of the
|
393 |
+
public licenses.
|
394 |
+
|
395 |
+
Creative Commons may be contacted at creativecommons.org.
|
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Acme Trace
|
2 |
+
|
3 |
+
This repository hosts the public releases of Acme traces from the Shanghai AI Lab, encompassing workloads spanning from March 2023 to August 2023. We encourage anyone to use the traces for academic purposes, and if you had any questions, feel free to send an email to us, or file an issue on Github.
|
4 |
+
|
5 |
+
Furthermore, we have conducted a thorough analysis of the Acme workloads, detailed in our NSDI '24 paper titled [Characterization of Large Language Model Development in the Datacenter](https://www.usenix.org/conference/nsdi24/presentation/hu).
|
6 |
+
|
7 |
+
<!-- ### **Note that due to space constraints on GitHub, our cluster utilization files are not hosted here. If you're interested in accessing these files, they are available on HuggingFace (~80GB).**
|
8 |
+
<span style="font-size:20px;font-weight:bold;"> Link:</span> [<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/dataset-on-hf-sm.svg">](https://huggingface.co/datasets/Qinghao/AcmeTrace) -->
|
9 |
+
|
10 |
+
<!-- **[Acme Full Dataset](https://huggingface.co/datasets/Qinghao/AcmeTrace)** -->
|
11 |
+
|
12 |
+
# Acme Dataset
|
13 |
+
|
14 |
+
The main trace characteristics, dataset structure and schema are:
|
15 |
+
|
16 |
+
## Main Characteristics:
|
17 |
+
* Full Dataset size: 80GB (on HuggingFace)
|
18 |
+
* Dataset size: 109MB
|
19 |
+
* Duration: 6 months
|
20 |
+
* Number of independent GPU clusters: 2
|
21 |
+
* Total number of jobs: 880,740
|
22 |
+
* Total number of GPU jobs: 470,497
|
23 |
+
|
24 |
+
## Dataset Structure
|
25 |
+
|
26 |
+
```
|
27 |
+
📦AcmeTrace
|
28 |
+
┣ 📂data
|
29 |
+
┃ ┣ 📂job_trace
|
30 |
+
┃ ┃ ┣ 📂trace_previous_work (Prior job traces for comparison)
|
31 |
+
┃ ┃ ┃ ┣ 📜helios_trace.csv
|
32 |
+
┃ ┃ ┃ ┣ 📜xxx.csv
|
33 |
+
┃ ┃ ┣ 📜trace_kalos.csv (Job trace file, collected from scheduler)
|
34 |
+
┃ ┃ ┗ 📜trace_seren.csv
|
35 |
+
┃ ┣ 📂utilization
|
36 |
+
┃ ┃ ┣ 📂ipmi (Power of different server models in Seren, collected from IPMI)
|
37 |
+
┃ ┃ ┃ ┣ 📜CPU_D_Power.csv
|
38 |
+
┃ ┃ ┃ ┣ 📜GPU_AB_Power.csv
|
39 |
+
┃ ┃ ┃ ┗ 📜GPU_C_Power.csv
|
40 |
+
┃ ┃ ┣ 📂kalos (Resource utilization logs, collected from DCGM & Prometheus)
|
41 |
+
┃ ┃ ┃ ┣ 📜DRAM_ACTIVE.csv
|
42 |
+
┃ ┃ ┃ ┣ 📜xxx.csv
|
43 |
+
┃ ┃ ┣ 📂seren
|
44 |
+
┃ ┃ ┃ ┣ 📜DRAM_ACTIVE.csv
|
45 |
+
┃ ┃ ┃ ┣ 📜xxx.csv
|
46 |
+
┃ ┃ ┣ 📂util_pkl (Processed pickle files for plotting)
|
47 |
+
┃ ┃ ┃ ┣ 📜gpu_power_kalos.pkl
|
48 |
+
┃ ┃ ┃ ┣ 📜xxx.pkl
|
49 |
+
┃ ┣ 📜cluster_summary.csv
|
50 |
+
┃ ┣ 📜generate_utilization_pkl.ipynb (Parse utilization files and generate pickles)
|
51 |
+
┃ ┗ 📜utils.py
|
52 |
+
┣ 📂figure (Examples of trace visualization)
|
53 |
+
┃ ┣ 📜bar_job_state.pdf
|
54 |
+
┃ ┣ 📜xxx.pdf
|
55 |
+
┣ 📜LICENSE.txt
|
56 |
+
┣ 📜README.md
|
57 |
+
┗ 📜analysis.ipynb (Scripts for plotting)
|
58 |
+
```
|
59 |
+
|
60 |
+
## Schema and Description
|
61 |
+
|
62 |
+
### 1. Job Trace
|
63 |
+
|
64 |
+
#### Description
|
65 |
+
|
66 |
+
Provides rich information on all jobs submitted to scheduler in each cluster.
|
67 |
+
|
68 |
+
+ `trace_seren.csv` Example
|
69 |
+
|
70 |
+
| job_id | user | node_num | gpu_num | cpu_num | type | state | submit_time | start_time | end_time | duration | queue | gpu_time |
|
71 |
+
|---------|-------|----------|---------|---------|-------|-----------|---------------------------|---------------------------|---------------------------|----------|-------|----------|
|
72 |
+
| 5778432 | u5907 | 1 | 8 | 128 | Other | FAILED | 2023-03-01 00:18:22+08:00 | 2023-03-01 00:18:54+08:00 | 2023-03-01 00:20:51+08:00 | 117 | 32 | 936.0 |
|
73 |
+
| 5778469 | u5907 | 1 | 8 | 128 | Other | COMPLETED | 2023-03-01 00:23:58+08:00 | 2023-03-01 00:24:11+08:00 | 2023-03-01 01:09:04+08:00 | 2693 | 13 | 21544.0 |
|
74 |
+
|
75 |
+
|
76 |
+
+ `trace_kalos.csv` Example
|
77 |
+
|
78 |
+
| job_id | user | node_num | gpu_num | cpu_num | mem_per_pod_GB | shared_mem_per_pod | type | state | submit_time | start_time | end_time | fail_time | stop_time | duration | queue | gpu_time |
|
79 |
+
|------------------|-------|----------|---------|---------|----------------|--------------------|-------|-----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------|-------|----------|
|
80 |
+
| dlctk696s0jbvitv | uf794 | 8 | 64 | 960 | 1000 | 100.0 | Other | FAILED | 2023-05-17 11:00:58+00:00 | 2023-05-17 11:01:08+00:00 | 2023-05-17 11:01:16+00:00 | 2023-05-17 11:01:16+00:00 | | 18 | 10.0 | 1152.0 |
|
81 |
+
| dlc1t2ypl09b8qtp | uf794 | 8 | 64 | 960 | 1000 | 100.0 | Other | CANCELLED | 2023-05-17 11:28:42+00:00 | 2023-05-17 11:28:54+00:00 | 2023-05-17 11:30:04+00:00 | | 2023-05-17 11:30:04+00:00 | 82 | 12.0 | 5248.0 |
|
82 |
+
|
83 |
+
|
84 |
+
#### Schema
|
85 |
+
|
86 |
+
| Field | Description |
|
87 |
+
| ------------- | --------------------------------------------------- |
|
88 |
+
| `job_id` | unique id of the job |
|
89 |
+
| `user` | hashed id for the user, prefix is '*u*' |
|
90 |
+
| `node_num` | number of nodes in the job |
|
91 |
+
| `gpu_num` | number of GPUs required for the job |
|
92 |
+
| `cpu_num` | number of CPUs required for the job |
|
93 |
+
| `type` | workload type in LLM development |
|
94 |
+
| `state` | the job's status upon termination <sup>1</sup> |
|
95 |
+
| `submit_time` | the job's submission time |
|
96 |
+
| `start_time` | the job's start execution time |
|
97 |
+
| `end_time` | the job's termination time |
|
98 |
+
| `duration` | total job execution time of the job <sup>2</sup> |
|
99 |
+
| `queue` | total job queue time of the job <sup>3</sup> |
|
100 |
+
| `gpu_time` | total GPU resource consumed by the job <sup>4</sup> |
|
101 |
+
|
102 |
+
Only in Kalos:
|
103 |
+
| Field | Description |
|
104 |
+
| ------------- | --------------------------------------------------- |
|
105 |
+
| `mem_per_pod_GB` | Pod memory resource configuration |
|
106 |
+
| `shared_mem_per_pod` | Pod memory resource configuration |
|
107 |
+
| `fail_time` | the time that failure occurs |
|
108 |
+
| `stop_time` | the time that job stops |
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
#### Notes
|
113 |
+
1. A job can end up with one of five statuses: (1) `COMPLETED`: it is finished successfully; (2) `CANCELLED`: it is terminated by the user; (3) `FAILED`: it is terminated due to internal or external errors; (4) `TIMEOUT`: the execution time is out of limit; (5) `NODE_FAIL`: it is terminated due to the node crash. `TIMEOUT` and `NODE_FAIL` are very rare in our traces, and are regarded as failed in our analysis.
|
114 |
+
2. Calculated from the difference between `end_time` and `start_time`. (Unit: seconds)
|
115 |
+
3. Calculated from the difference between `start_time` and `submit_time`. (Unit: seconds)
|
116 |
+
4. Calculated from the product between `duration` and `gpu_num`.
|
117 |
+
|
118 |
+
|
119 |
+
### 2. Resource Utilization
|
120 |
+
|
121 |
+
|
122 |
+
#### Description
|
123 |
+
|
124 |
+
Cluster resource utilization monitoring data, collected from DCGM, IPMI and Prometheus.
|
125 |
+
|
126 |
+
+ `NODE_CPU_UTILIZATION.csv` Example
|
127 |
+
|
128 |
+
| Time | 10.140.1.10 | 10.140.1.54 | 10.140.1.90 | 10.140.1.41 | 10.140.1.98 | 10.140.0.166 | 10.140.1.4 | 10.140.1.40 | 10.140.1.134 | 10.140.0.147 | 10.140.1.119 | 10.140.0.184 | 10.140.0.151 | 10.140.0.254 | 10.140.1.83 | 10.140.0.246 | 10.140.1.78 | 10.140.1.103 | 10.140.1.155 | 10.140.1.87 | 10.140.1.106 | 10.140.1.140 | 10.140.1.150 | 10.140.1.107 | 10.140.1.172 | 10.140.1.95 | 10.140.0.146 | 10.140.1.125 | 10.140.1.50 | 10.140.1.112 | 10.140.0.159 | 10.140.0.144 | 10.140.0.215 | 10.140.1.36 | 10.140.1.143 | 10.140.1.147 | 10.140.1.14 | 10.140.1.85 | 10.140.1.56 | 10.140.0.243 | 10.140.0.242 | 10.140.1.63 | 10.140.0.132 | 10.140.0.255 | 10.140.1.59 | 10.140.1.130 | 10.140.0.218 | 10.140.0.220 | 10.140.1.27 | 10.140.1.67 | 10.140.1.136 | 10.140.1.84 | 10.140.0.190 | 10.140.1.121 | 10.140.1.146 | 10.140.1.38 | 10.140.0.232 | 10.140.1.18 | 10.140.1.66 | 10.140.0.205 | 10.140.1.154 | 10.140.1.170 | 10.140.0.179 | 10.140.0.135 | 10.140.1.102 | 10.140.1.72 | 10.140.0.249 | 10.140.1.138 | 10.140.1.24 | 10.140.1.60 | 10.140.1.82 | 10.140.0.233 | 10.140.1.23 | 10.140.0.241 | 10.140.0.248 | 10.140.1.68 | 10.140.1.1 | 10.140.0.219 | 10.140.1.116 | 10.140.0.157 | 10.140.0.178 | 10.140.1.29 | 10.140.1.57 | 10.140.0.163 | 10.140.1.52 | 10.140.1.177 | 10.140.1.11 | 10.140.1.26 | 10.140.1.34 | 10.140.1.92 | 10.140.0.211 | 10.140.0.161 | 10.140.0.131 | 10.140.1.124 | 10.140.0.238 | 10.140.1.44 | 10.140.0.237 | 10.140.1.79 | 10.140.1.17 | 10.140.0.214 | 10.140.1.153 | 10.140.1.117 | 10.140.1.109 | 10.140.0.167 | 10.140.0.207 | 10.140.0.134 | 10.140.1.99 | 10.140.1.31 | 10.140.1.127 | 10.140.0.250 | 10.140.1.139 | 10.140.1.53 | 10.140.1.123 | 10.140.1.77 | 10.140.0.133 | 10.140.0.251 | 10.140.1.55 | 10.140.1.12 | 10.140.1.19 | 10.140.1.47 | 10.140.1.118 | 10.140.1.61 | 10.140.1.110 | 10.140.1.64 | 10.140.1.129 | 10.140.0.217 | 10.140.1.104 | 10.140.0.244 | 10.140.0.213 | 10.140.1.97 | 10.140.0.136 | 10.140.1.22 | 10.140.1.32 | 10.140.1.171 | 10.140.1.151 | 10.140.1.96 | 10.140.1.46 | 10.140.0.158 | 10.140.1.51 | 10.140.1.86 | 10.140.1.30 | 10.140.0.156 | 10.140.1.43 | 10.140.1.74 | 10.140.1.89 | 10.140.1.169 | 10.140.1.80 | 10.140.1.2 | 10.140.1.108 | 10.140.1.93 | 10.140.1.73 | 10.140.0.180 | 10.140.1.71 | 10.140.1.88 | 10.140.0.209 | 10.140.1.81 | 10.140.0.152 | 10.140.1.28 | 10.140.1.58 | 10.140.0.236 | 10.140.0.138 | 10.140.0.149 | 10.140.0.206 | 10.140.1.15 | 10.140.0.240 | 10.140.0.203 | 10.140.1.5 | 10.140.1.37 | 10.140.0.143 | 10.140.0.160 | 10.140.0.252 | 10.140.1.75 | 10.140.1.115 | 10.140.0.247 | 10.140.1.6 | 10.140.1.16 | 10.140.0.216 | 10.140.0.150 | 10.140.1.25 | 10.140.0.208 | 10.140.1.62 | 10.140.1.173 | 10.140.1.137 | 10.140.1.9 | 10.140.1.65 | 10.140.1.111 | 10.140.1.135 | 10.140.1.114 | 10.140.1.132 | 10.140.0.154 | 10.140.0.204 | 10.140.1.91 | 10.140.1.120 | 10.140.1.105 | 10.140.1.131 | 10.140.0.165 | 10.140.0.210 | 10.140.0.148 | 10.140.1.133 | 10.140.0.239 | 10.140.1.13 | 10.140.1.144 | 10.140.0.137 | 10.140.0.234 | 10.140.1.142 | 10.140.1.168 | 10.140.0.235 | 10.140.0.140 | 10.140.1.39 | 10.140.0.153 | 10.140.0.139 | 10.140.1.3 | 10.140.1.7 | 10.140.1.94 | 10.140.1.145 | 10.140.1.149 | 10.140.1.152 | 10.140.1.35 | 10.140.0.141 | 10.140.1.69 | 10.140.1.100 | 10.140.1.126 | 10.140.0.142 | 10.140.0.185 | 10.140.1.42 | 10.140.0.231 | 10.140.0.253 | 10.140.0.212 | 10.140.1.21 | 10.140.1.148 | 10.140.1.49 | 10.140.1.128 | 10.140.0.164 | 10.140.1.70 | 10.140.1.45 | 10.140.0.162 | 10.140.1.101 | 10.140.0.145 | 10.140.1.20 | 10.140.1.176 | 10.140.1.33 | 10.140.1.113 | 10.140.1.122 | 10.140.1.76 | 10.140.1.141 | 10.140.1.8 | 10.140.0.155 | 10.140.1.48 |
|
129 |
+
|---------------------------|-------------|-------------|-------------|-------------|-------------|--------------|------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|-------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|--------------|-------------|--------------|--------------|-------------|------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|--------------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|------------|--------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|------------|-------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|------------|------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------|--------------|------------|--------------|-------------|
|
130 |
+
| 2023-07-01 08:00:00+08:00 | 8.101 | 7.809 | 8.034 | 0.437 | 0.672 | 8.988 | 8.395 | 8.205 | 8.763 | 2.037 | 6.661 | 9.177 | 9.017 | 8.096 | 14.423 | 8.04 | 0.354 | 0.34 | 0.843 | 8.66 | 0.657 | 8.104 | 0.902 | 7.006 | 0.107 | 8.298 | 8.546 | 6.413 | 8.1 | 6.633 | 8.167 | 9.246 | 9.055 | 2.963 | 7.995 | 0.707 | 8.119 | 10.531 | 6.654 | 7.707 | 4.626 | 0.848 | 25.274 | 7.95 | 8.014 | 7.908 | 9.313 | 9.184 | 7.877 | 0.484 | 8.451 | 6.137 | 0.124 | 6.163 | 0.316 | 8.343 | 9.024 | 7.922 | 8.427 | 0.455 | 67.47 | 0.395 | 7.487 | 9.142 | 7.898 | 8.071 | 7.717 | 0.755 | 7.869 | 8.193 | 8.368 | 8.911 | 8.108 | 7.934 | 8.269 | 8.161 | 8.349 | 9.252 | 6.933 | 4.823 | 7.527 | 8.42 | 7.243 | 9.166 | 8.04 | 0.092 | 7.921 | 8.28 | 8.027 | 0.365 | 8.71 | 9.302 | 0.88 | 8.055 | 8.817 | 8.07 | 9.316 | 8.064 | 8.061 | 9.319 | 7.101 | 5.221 | 7.086 | 7.701 | 9.259 | 8.857 | 5.079 | 7.944 | 8.02 | 8.244 | 8.038 | 8.269 | 5.108 | 6.971 | 1.787 | 8.095 | 8.055 | 8.275 | 8.396 | 7.787 | 6.898 | 8.224 | 16.323 | 0.671 | 8.071 | 9.125 | 8.004 | 7.888 | 8.785 | 5.412 | 0.621 | 8.004 | 7.91 | 6.727 | 10.327 | 0.413 | 8.499 | 7.735 | 8.255 | 8.087 | 8.001 | 5.908 | 8.239 | 8.279 | 7.272 | 0.14 | 8.186 | 0.526 | 6.771 | 6.386 | 6.763 | 7.308 | 6.741 | 8.047 | 8.883 | 7.059 | 8.79 | 7.864 | 8.065 | 9.474 | 0.481 | 9.179 | 9.579 | 8.157 | 9.063 | 7.339 | 8.295 | 6.81 | 9.029 | 9.037 | 8.042 | 0.717 | 6.675 | 7.838 | 8.192 | 8.038 | 9.004 | 8.621 | 8.117 | 8.177 | 22.467 | 0.198 | 3.4 | 8.086 | 7.86 | 6.891 | 4.376 | 7.144 | 5.331 | 8.924 | 7.668 | 0.332 | 7.961 | 7.958 | 8.164 | 5.741 | 8.938 | 8.969 | 6.372 | 8.816 | 8.361 | 12.62 | 9.149 | 9.151 | 8.374 | 8.831 | 9.332 | 9.181 | 8.142 | 8.653 | 1.449 | 8.268 | 8.481 | 8.568 | 0.468 | 59.942 | 66.076 | 8.191 | 8.96 | 8.223 | 0.478 | 8.023 | 9.129 | 9.6 | 8.164 | 9.518 | 8.172 | 9.551 | 8.012 | 14.544 | 8.154 | 8.069 | 9.344 | 0.357 | 8.09 | 0.463 | 8.082 | 7.657 | 8.139 | 0.164 | 8.143 | 6.56 | 6.632 | 8.018 | 8.065 | 8.288 | 8.667 | 8.078 |
|
131 |
+
|
132 |
+
|
133 |
+
#### Schema
|
134 |
+
|
135 |
+
| Field | Description |
|
136 |
+
| ------- | --------------------------------------- |
|
137 |
+
| `Time` | sampling timestamp, interval is 15 seconds |
|
138 |
+
| `10.140.xx.xx` | server ip |
|
analysis.ipynb
ADDED
@@ -0,0 +1,1111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"#### Analysis"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"from typing import List\n",
|
17 |
+
"import os\n",
|
18 |
+
"import pickle\n",
|
19 |
+
"import squarify\n",
|
20 |
+
"\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"import pandas as pd\n",
|
23 |
+
"import seaborn as sns\n",
|
24 |
+
"import matplotlib\n",
|
25 |
+
"import matplotlib.pyplot as plt\n",
|
26 |
+
"import matplotlib.patches as mpatches\n",
|
27 |
+
"from matplotlib.lines import Line2D\n",
|
28 |
+
"\n",
|
29 |
+
"SAVEPATH = \"./figure\"\n",
|
30 |
+
"TRACEPATH = \"./data/job_trace\"\n",
|
31 |
+
"PKLPATH = \"./data/utilization/util_pkl\"\n",
|
32 |
+
"\n",
|
33 |
+
"sns.set_style(\"ticks\")\n",
|
34 |
+
"font = {\n",
|
35 |
+
" \"font.family\": \"Roboto\",\n",
|
36 |
+
" \"font.size\": 12,\n",
|
37 |
+
"}\n",
|
38 |
+
"sns.set_style(font)\n",
|
39 |
+
"paper_rc = {\n",
|
40 |
+
" \"lines.linewidth\": 3,\n",
|
41 |
+
" \"lines.markersize\": 10,\n",
|
42 |
+
"}\n",
|
43 |
+
"sns.set_context(\"paper\", font_scale=2, rc=paper_rc)\n",
|
44 |
+
"cmp = sns.color_palette(\"tab10\")\n",
|
45 |
+
"\n",
|
46 |
+
"\n",
|
47 |
+
"def autolabel(rects, ax, prec=1):\n",
|
48 |
+
" \"\"\"Attach a text label above each bar in *rects*, displaying its height.\"\"\"\n",
|
49 |
+
" for rect in rects:\n",
|
50 |
+
" height = rect.get_height()\n",
|
51 |
+
" ax.annotate(\n",
|
52 |
+
" f\"{height:.{prec}f}\",\n",
|
53 |
+
" xy=(rect.get_x() + rect.get_width() / 2, height),\n",
|
54 |
+
" xytext=(0, 3), # 3 points vertical offset\n",
|
55 |
+
" textcoords=\"offset points\",\n",
|
56 |
+
" ha=\"center\",\n",
|
57 |
+
" va=\"bottom\",\n",
|
58 |
+
" size=16,\n",
|
59 |
+
" )\n",
|
60 |
+
"\n",
|
61 |
+
"\n",
|
62 |
+
"def calculate_num_cdf_customized_xaxis(df: pd.DataFrame, x_axis: List, key: str):\n",
|
63 |
+
" \"\"\"\n",
|
64 |
+
" Calculate quantity percentile CDF with customized threshold of x-axis, y-axis: 0-100%,\n",
|
65 |
+
" \"\"\"\n",
|
66 |
+
" # print(\"Parsing\")\n",
|
67 |
+
" data = df[[key]].copy()\n",
|
68 |
+
" data.dropna(inplace=True)\n",
|
69 |
+
"\n",
|
70 |
+
" y = [len(data[data[key] <= x]) / len(data) * 100 for x in x_axis]\n",
|
71 |
+
"\n",
|
72 |
+
" return y\n",
|
73 |
+
"\n",
|
74 |
+
"\n",
|
75 |
+
"def calculate_sum_cdf_customized_xaxis(df: pd.DataFrame, x_axis: List, key: str, key_to_time=None):\n",
|
76 |
+
" \"\"\"\n",
|
77 |
+
" Calculate sum CDF with customized threshold of x-axis, y-axis: 0-100%,\n",
|
78 |
+
" \"\"\"\n",
|
79 |
+
" if key_to_time is not None:\n",
|
80 |
+
" data = df[[key, key_to_time]].copy()\n",
|
81 |
+
" data[\"new\"] = data[key] * data[key_to_time]\n",
|
82 |
+
" else:\n",
|
83 |
+
" data = df[[key]].copy()\n",
|
84 |
+
" data[\"new\"] = data[key]\n",
|
85 |
+
" data.dropna(inplace=True)\n",
|
86 |
+
" sum = data[\"new\"].sum()\n",
|
87 |
+
"\n",
|
88 |
+
" y = [data[data[key] <= x][\"new\"].sum() / sum * 100 for x in x_axis]\n",
|
89 |
+
"\n",
|
90 |
+
" return y\n",
|
91 |
+
"\n",
|
92 |
+
"\n",
|
93 |
+
"if not os.path.exists(SAVEPATH):\n",
|
94 |
+
" os.makedirs(SAVEPATH)\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"data_seren = pd.read_csv(f\"{TRACEPATH}/trace_seren.csv\")\n",
|
98 |
+
"data_kalos = pd.read_csv(f\"{TRACEPATH}/trace_kalos.csv\")\n",
|
99 |
+
"data_philly = pd.read_csv(f\"{TRACEPATH}/trace_previous_work/philly_trace.csv\")\n",
|
100 |
+
"data_helios = pd.read_csv(f\"{TRACEPATH}/trace_previous_work/helios_trace.csv\")\n",
|
101 |
+
"data_pai = pd.read_csv(f\"{TRACEPATH}/trace_previous_work/pai_trace.csv\")\n",
|
102 |
+
"\n",
|
103 |
+
"# A few further process\n",
|
104 |
+
"data_pai.rename(columns={\"plan_cpu\": \"cpu_num\", \"plan_gpu\": \"gpu_num\", \"wait_time\": \"queue\", \"status\": \"state\"}, inplace=True)\n",
|
105 |
+
"data_pai[[\"cpu_num\", \"gpu_num\"]] /= 100\n",
|
106 |
+
"data_pai[\"state\"] = data_pai[\"state\"].map({\"Failed\": \"FAILED\"}) # Not suitable for final state analysis\n",
|
107 |
+
"data_philly[\"state\"] = data_philly[\"state\"].map({\"Pass\": \"COMPLETED\", \"Failed\": \"FAILED\", \"Killed\": \"CANCELLED\"})"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "markdown",
|
112 |
+
"metadata": {},
|
113 |
+
"source": [
|
114 |
+
"#### CDF: GPU Job Duration & Utilization"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"x = [2**i for i in range(0, 22)]\n",
|
124 |
+
"y_gpu_seren = calculate_num_cdf_customized_xaxis(data_seren[data_seren[\"gpu_num\"] > 0], x_axis=x, key=\"duration\")\n",
|
125 |
+
"y_gpu_kalos = calculate_num_cdf_customized_xaxis(data_kalos[data_kalos[\"gpu_num\"] > 0], x_axis=x, key=\"duration\")\n",
|
126 |
+
"y_gpu_philly = calculate_num_cdf_customized_xaxis(data_philly[data_philly[\"gpu_num\"] > 0], x_axis=x, key=\"duration\")\n",
|
127 |
+
"y_gpu_helios = calculate_num_cdf_customized_xaxis(data_helios[data_helios[\"gpu_num\"] > 0], x_axis=x, key=\"duration\")\n",
|
128 |
+
"y_gpu_pai = calculate_num_cdf_customized_xaxis(data_pai[data_pai[\"gpu_num\"] > 0], x_axis=x, key=\"duration\")\n",
|
129 |
+
"\n",
|
130 |
+
"with open(f\"{PKLPATH}/util_gpu_seren.pkl\", \"rb\") as file:\n",
|
131 |
+
" x1, y1, _, _, _, _, _, _, _, _ = pickle.load(file)\n",
|
132 |
+
"\n",
|
133 |
+
"with open(f\"{PKLPATH}/util_gpu_kalos.pkl\", \"rb\") as file:\n",
|
134 |
+
" x4, y4, _, _ = pickle.load(file)\n",
|
135 |
+
"\n",
|
136 |
+
"with open(f\"{PKLPATH}/util_gpu_pai.pkl\", \"rb\") as file: # Collect via Antman\n",
|
137 |
+
" x2, y2 = pickle.load(file)\n",
|
138 |
+
"\n",
|
139 |
+
"with open(f\"{PKLPATH}/util_gpu_philly.pkl\", \"rb\") as file:\n",
|
140 |
+
" x3, y3 = pickle.load(file)"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"linestyles = [\"-\", \"--\", \":\", \":\", \":\"]\n",
|
150 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
151 |
+
"fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, constrained_layout=True, figsize=(9, 3.75))\n",
|
152 |
+
"\n",
|
153 |
+
"ax1.plot(x, y_gpu_seren, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
154 |
+
"ax1.plot(x, y_gpu_kalos, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
155 |
+
"ax1.plot(x, y_gpu_philly, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"Philly\")\n",
|
156 |
+
"ax1.plot(x, y_gpu_helios, linestyles[3], linewidth=3, alpha=0.9, color=cmp[3], label=\"Helios\")\n",
|
157 |
+
"ax1.plot(x, y_gpu_pai, linestyles[3], linewidth=3, alpha=0.9, color=cmp[4], label=\"PAI\")\n",
|
158 |
+
"\n",
|
159 |
+
"ax2.plot(x1, y1, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
160 |
+
"ax2.plot(x4, y4, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
161 |
+
"ax2.plot(x2, y2, linestyles[2], linewidth=3, alpha=0.9, color=cmp[4], label=\"PAI\")\n",
|
162 |
+
"ax2.plot(x3, y3, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"Philly\")\n",
|
163 |
+
"\n",
|
164 |
+
"ax1.set_xlabel(f\"(a) GPU Job Duration (s)\")\n",
|
165 |
+
"ax1.set_ylabel(f\"CDF (%)\")\n",
|
166 |
+
"ax1.set_xscale(\"log\")\n",
|
167 |
+
"ax1.set_xticks([1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6])\n",
|
168 |
+
"ax1.set_xlim(1, x[-1])\n",
|
169 |
+
"ax1.set_ylim(-0.5, 100.8)\n",
|
170 |
+
"ax1.grid(linestyle=\":\")\n",
|
171 |
+
"\n",
|
172 |
+
"ax2.set_xlabel(f\"(b) GPU Utilization (%)\")\n",
|
173 |
+
"ax2.set_ylabel(f\"CDF (%)\")\n",
|
174 |
+
"ax2.set_xlim(-0.8, 100.8)\n",
|
175 |
+
"ax2.set_xticks([0, 25, 50, 75, 100])\n",
|
176 |
+
"ax2.set_ylim(0, 100.8)\n",
|
177 |
+
"ax2.grid(linestyle=\":\")\n",
|
178 |
+
"\n",
|
179 |
+
"handles, labels = ax1.get_legend_handles_labels()\n",
|
180 |
+
"fig.legend(handles=handles, labels=labels, ncols=5, bbox_to_anchor=(0.1, 1.145), loc=2, columnspacing=1.5, handletextpad=0.5)\n",
|
181 |
+
"\n",
|
182 |
+
"sns.despine()\n",
|
183 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_job_duration_util.pdf\", bbox_inches=\"tight\")"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "markdown",
|
188 |
+
"metadata": {},
|
189 |
+
"source": [
|
190 |
+
"#### CDF: GPU Number"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": null,
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"x = [i for i in range(0, 1025)]\n",
|
200 |
+
"y_gpu_seren = calculate_num_cdf_customized_xaxis(data_seren[data_seren[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\")\n",
|
201 |
+
"y_gpu_kalos = calculate_num_cdf_customized_xaxis(data_kalos[data_kalos[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\")\n",
|
202 |
+
"y_gpu_philly = calculate_num_cdf_customized_xaxis(data_philly[data_philly[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\")\n",
|
203 |
+
"y_gpu_helios = calculate_num_cdf_customized_xaxis(data_helios[data_helios[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\")\n",
|
204 |
+
"y_gpu_pai = calculate_num_cdf_customized_xaxis(data_pai[data_pai[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\")\n",
|
205 |
+
"\n",
|
206 |
+
"y_gtime_seren = calculate_sum_cdf_customized_xaxis(\n",
|
207 |
+
" data_seren[data_seren[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\", key_to_time=\"duration\"\n",
|
208 |
+
")\n",
|
209 |
+
"y_gtime_kalos = calculate_sum_cdf_customized_xaxis(\n",
|
210 |
+
" data_kalos[data_kalos[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\", key_to_time=\"duration\"\n",
|
211 |
+
")\n",
|
212 |
+
"y_gtime_philly = calculate_sum_cdf_customized_xaxis(\n",
|
213 |
+
" data_philly[data_philly[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\", key_to_time=\"duration\"\n",
|
214 |
+
")\n",
|
215 |
+
"y_gtime_helios = calculate_sum_cdf_customized_xaxis(\n",
|
216 |
+
" data_helios[data_helios[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\", key_to_time=\"duration\"\n",
|
217 |
+
")\n",
|
218 |
+
"y_gtime_pai = calculate_sum_cdf_customized_xaxis(\n",
|
219 |
+
" data_pai[data_pai[\"gpu_num\"] > 0], x_axis=x, key=\"gpu_num\", key_to_time=\"duration\"\n",
|
220 |
+
")"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": null,
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"linestyles = [\"-\", \"--\", \":\", \":\", \":\"]\n",
|
230 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
231 |
+
"fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, constrained_layout=True, figsize=(9, 3.75))\n",
|
232 |
+
"\n",
|
233 |
+
"ax1.plot(x, y_gpu_seren, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
234 |
+
"ax1.plot(x, y_gpu_kalos, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
235 |
+
"ax1.plot(x, y_gpu_philly, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"Philly\")\n",
|
236 |
+
"ax1.plot(x, y_gpu_helios, linestyles[3], linewidth=3, alpha=0.9, color=cmp[3], label=\"Helios\")\n",
|
237 |
+
"ax1.plot(x, y_gpu_pai, linestyles[3], linewidth=3, alpha=0.9, color=cmp[4], label=\"PAI\")\n",
|
238 |
+
"\n",
|
239 |
+
"ax2.plot(x, y_gtime_seren, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
240 |
+
"ax2.plot(x, y_gtime_kalos, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
241 |
+
"ax2.plot(x, y_gtime_philly, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"Philly\")\n",
|
242 |
+
"ax2.plot(x, y_gtime_helios, linestyles[3], linewidth=3, alpha=0.9, color=cmp[3], label=\"Helios\")\n",
|
243 |
+
"ax2.plot(x, y_gtime_pai, linestyles[3], linewidth=3, alpha=0.9, color=cmp[4], label=\"PAI\")\n",
|
244 |
+
"\n",
|
245 |
+
"\n",
|
246 |
+
"ax1.set_xlabel(f\"(a) Number of GPU\")\n",
|
247 |
+
"ax1.set_ylabel(f\"CDF of Jobs (%)\")\n",
|
248 |
+
"ax1.set_xscale(\"log\", base=2)\n",
|
249 |
+
"ax1.set_xticks([2**i for i in range(0, 11, 2)])\n",
|
250 |
+
"ax1.set_xticklabels(\n",
|
251 |
+
" [2**i for i in range(0, 10, 2)]\n",
|
252 |
+
" + [\n",
|
253 |
+
" \"1024+\",\n",
|
254 |
+
" ]\n",
|
255 |
+
")\n",
|
256 |
+
"ax1.set_xlim(1, x[-1] + 1)\n",
|
257 |
+
"ax1.set_ylim(-0.5, 100.8)\n",
|
258 |
+
"ax1.grid(linestyle=\":\")\n",
|
259 |
+
"\n",
|
260 |
+
"ax2.set_xlabel(f\"(b) Number of GPU\")\n",
|
261 |
+
"ax2.set_ylabel(f\"CDF of GPU Time (%)\")\n",
|
262 |
+
"ax2.set_xscale(\"log\", base=2)\n",
|
263 |
+
"ax2.set_xticks([2**i for i in range(0, 11, 2)])\n",
|
264 |
+
"ax2.set_xticklabels(\n",
|
265 |
+
" [2**i for i in range(0, 10, 2)]\n",
|
266 |
+
" + [\n",
|
267 |
+
" \"1024+\",\n",
|
268 |
+
" ]\n",
|
269 |
+
")\n",
|
270 |
+
"ax2.set_xlim(1, x[-1] + 50)\n",
|
271 |
+
"ax2.set_ylim(-0.5, 100.8)\n",
|
272 |
+
"ax2.grid(linestyle=\":\")\n",
|
273 |
+
"\n",
|
274 |
+
"handles, labels = ax1.get_legend_handles_labels()\n",
|
275 |
+
"fig.legend(handles=handles, labels=labels, ncols=5, bbox_to_anchor=(0.1, 1.145), loc=2, columnspacing=1.5, handletextpad=0.5)\n",
|
276 |
+
"\n",
|
277 |
+
"sns.despine()\n",
|
278 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_job_gpunum.pdf\", bbox_inches=\"tight\")"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "markdown",
|
283 |
+
"metadata": {},
|
284 |
+
"source": [
|
285 |
+
"#### Bar: Job Final State"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": [
|
294 |
+
"df = pd.read_csv(\"./data/cluster_summary.csv\", index_col=\"id\")\n",
|
295 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
296 |
+
"fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, constrained_layout=True, figsize=(9, 3.75))\n",
|
297 |
+
"\n",
|
298 |
+
"x = np.arange(1, 3)\n",
|
299 |
+
"width = 0.22\n",
|
300 |
+
"p1 = ax1.bar(\n",
|
301 |
+
" x - width,\n",
|
302 |
+
" df.loc[[\"Seren\", \"Kalos\"], \"complete_rate_gpu\"] * 100,\n",
|
303 |
+
" width,\n",
|
304 |
+
" label=\"Completed\",\n",
|
305 |
+
" alpha=0.8,\n",
|
306 |
+
" linewidth=1,\n",
|
307 |
+
" edgecolor=\"k\",\n",
|
308 |
+
")\n",
|
309 |
+
"p2 = ax1.bar(\n",
|
310 |
+
" x, df.loc[[\"Seren\", \"Kalos\"], \"cancel_rate_gpu\"] * 100, width, label=\"Canceled\", alpha=0.8, linewidth=1, edgecolor=\"k\"\n",
|
311 |
+
")\n",
|
312 |
+
"p3 = ax1.bar(\n",
|
313 |
+
" x + width, df.loc[[\"Seren\", \"Kalos\"], \"fail_rate_gpu\"] * 100, width, label=\"Failed\", alpha=0.8, linewidth=1, edgecolor=\"k\"\n",
|
314 |
+
")\n",
|
315 |
+
"\n",
|
316 |
+
"p4 = ax2.bar(\n",
|
317 |
+
" x - width,\n",
|
318 |
+
" df.loc[[\"Seren\", \"Kalos\"], \"complete_rate_gpu_time\"] * 100,\n",
|
319 |
+
" width,\n",
|
320 |
+
" label=\"Completed\",\n",
|
321 |
+
" alpha=0.8,\n",
|
322 |
+
" linewidth=1,\n",
|
323 |
+
" edgecolor=\"k\",\n",
|
324 |
+
")\n",
|
325 |
+
"p5 = ax2.bar(\n",
|
326 |
+
" x, df.loc[[\"Seren\", \"Kalos\"], \"cancel_rate_gpu_time\"] * 100, width, label=\"Canceled\", alpha=0.8, linewidth=1, edgecolor=\"k\"\n",
|
327 |
+
")\n",
|
328 |
+
"p6 = ax2.bar(\n",
|
329 |
+
" x + width,\n",
|
330 |
+
" df.loc[[\"Seren\", \"Kalos\"], \"fail_rate_gpu_time\"] * 100,\n",
|
331 |
+
" width,\n",
|
332 |
+
" label=\"Failed\",\n",
|
333 |
+
" alpha=0.8,\n",
|
334 |
+
" linewidth=1,\n",
|
335 |
+
" edgecolor=\"k\",\n",
|
336 |
+
")\n",
|
337 |
+
"\n",
|
338 |
+
"autolabel(p1, ax1)\n",
|
339 |
+
"autolabel(p2, ax1)\n",
|
340 |
+
"autolabel(p3, ax1)\n",
|
341 |
+
"autolabel(p4, ax2)\n",
|
342 |
+
"autolabel(p5, ax2)\n",
|
343 |
+
"autolabel(p6, ax2)\n",
|
344 |
+
"\n",
|
345 |
+
"ax1.set_xlabel(f\"(a) Job Count\")\n",
|
346 |
+
"ax1.set_ylabel(f\"Fraction (%)\")\n",
|
347 |
+
"ax1.set_xticks(x)\n",
|
348 |
+
"ax1.set_xticklabels([\"Seren\", \"Kalos\"])\n",
|
349 |
+
"ax1.set_xlim(0.5, 2.5)\n",
|
350 |
+
"ax1.set_ylim(0, 100)\n",
|
351 |
+
"ax1.grid(axis=\"y\", linestyle=\":\")\n",
|
352 |
+
"\n",
|
353 |
+
"ax2.set_xlabel(f\"(b) GPU Time\")\n",
|
354 |
+
"ax2.set_ylabel(f\"Fraction (%)\")\n",
|
355 |
+
"ax2.set_xticks(x)\n",
|
356 |
+
"ax2.set_xticklabels([\"Seren\", \"Kalos\"])\n",
|
357 |
+
"ax2.set_xlim(0.5, 2.5)\n",
|
358 |
+
"ax2.set_ylim(0, 100)\n",
|
359 |
+
"ax2.grid(axis=\"y\", linestyle=\":\")\n",
|
360 |
+
"\n",
|
361 |
+
"handles, labels = ax1.get_legend_handles_labels()\n",
|
362 |
+
"fig.legend(handles=handles, labels=labels, ncols=5, bbox_to_anchor=(0.18, 1.145), loc=2)\n",
|
363 |
+
"\n",
|
364 |
+
"sns.despine()\n",
|
365 |
+
"fig.savefig(f\"{SAVEPATH}/bar_job_state.pdf\", bbox_inches=\"tight\")"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "markdown",
|
370 |
+
"metadata": {},
|
371 |
+
"source": [
|
372 |
+
"#### Treemap: Job Number Distribution"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": null,
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [],
|
380 |
+
"source": [
|
381 |
+
"print(\"Processing Seren\")\n",
|
382 |
+
"datas = data_seren[data_seren[\"gpu_num\"] > 0]\n",
|
383 |
+
"\n",
|
384 |
+
"job_type = [\"Eval\", \"Pretrain\", \"SFT\", \"MLLM\", \"Debug\", \"Other\"]\n",
|
385 |
+
"df = pd.DataFrame(index=job_type, columns=[\"job_count\"]).fillna(0)\n",
|
386 |
+
"df[\"job_count\"] = df.index.map(datas.groupby(\"type\").size()).astype(int)\n",
|
387 |
+
"df[\"gtime\"] = df.index.map(datas.groupby(\"type\")[\"gpu_time\"].sum()).astype(int)\n",
|
388 |
+
"\n",
|
389 |
+
"total = df[\"job_count\"].sum()\n",
|
390 |
+
"total_gtime = df[\"gtime\"].sum()\n",
|
391 |
+
"\n",
|
392 |
+
"df[\"count_percent\"] = df[\"job_count\"] / total * 100\n",
|
393 |
+
"df[\"gtime_percent\"] = df[\"gtime\"] / total_gtime * 100\n",
|
394 |
+
"\n",
|
395 |
+
"# For plotting\n",
|
396 |
+
"df[\"label\"] = [x + f\"\\n{df.at[x, 'count_percent']:.1f}%\" for x in list(df.index)]\n",
|
397 |
+
"df[\"label_gtime\"] = [x + f\"\\n{df.at[x, 'gtime_percent']:.1f}%\" for x in list(df.index)]\n",
|
398 |
+
"df[\"label_percent\"] = [f\"{df.at[x, 'count_percent']:.1f}%\" for x in list(df.index)]\n",
|
399 |
+
"df[\"label_gtime_percent\"] = [f\"{df.at[x, 'gtime_percent']:.1f}%\" for x in list(df.index)]\n",
|
400 |
+
"df_s = df.copy()\n",
|
401 |
+
"\n",
|
402 |
+
"print(\"Processing Kalos\")\n",
|
403 |
+
"datak = data_kalos[data_kalos[\"gpu_num\"] > 0]\n",
|
404 |
+
"\n",
|
405 |
+
"job_type = [\"Eval\", \"Pretrain\", \"Debug\", \"Other\"]\n",
|
406 |
+
"df = pd.DataFrame(index=job_type, columns=[\"job_count\"]).fillna(0)\n",
|
407 |
+
"df[\"job_count\"] = df.index.map(datak.groupby(\"type\").size()).astype(int)\n",
|
408 |
+
"df[\"gtime\"] = df.index.map(datak.groupby(\"type\")[\"gpu_time\"].sum()).astype(int)\n",
|
409 |
+
"\n",
|
410 |
+
"\n",
|
411 |
+
"total = df[\"job_count\"].sum()\n",
|
412 |
+
"total_gtime = df[\"gtime\"].sum()\n",
|
413 |
+
"\n",
|
414 |
+
"df[\"count_percent\"] = df[\"job_count\"] / total * 100\n",
|
415 |
+
"df[\"gtime_percent\"] = df[\"gtime\"] / total_gtime * 100\n",
|
416 |
+
"\n",
|
417 |
+
"# For plotting\n",
|
418 |
+
"df[\"label\"] = [x + f\"\\n{df.at[x, 'count_percent']:.1f}%\" for x in list(df.index)]\n",
|
419 |
+
"df[\"label_gtime\"] = [x + f\"\\n{df.at[x, 'gtime_percent']:.1f}%\" for x in list(df.index)]\n",
|
420 |
+
"df[\"label_percent\"] = [f\"{df.at[x, 'count_percent']:.1f}\\n%\" for x in list(df.index)]\n",
|
421 |
+
"df[\"label_gtime_percent\"] = [f\"{df.at[x, 'gtime_percent']:.1f}\\n%\" for x in list(df.index)]\n",
|
422 |
+
"df_k = df.copy()\n",
|
423 |
+
"\n",
|
424 |
+
"# For plotting\n",
|
425 |
+
"df_k.at[\"Pretrain\", \"label_gtime_percent\"] = df_k.at[\"Pretrain\", \"label_gtime\"]\n",
|
426 |
+
"df_k.at[\"Eval\", \"label_percent\"] = df_k.at[\"Eval\", \"label\"]\n",
|
427 |
+
"df_k.at[\"Other\", \"label_percent\"] = \"\"\n",
|
428 |
+
"df_k.at[\"Eval\", \"label_gtime_percent\"] = \" \"\n",
|
429 |
+
"\n",
|
430 |
+
"df_s.at[\"Pretrain\", \"label_gtime_percent\"] = df_s.at[\"Pretrain\", \"label_gtime\"]\n",
|
431 |
+
"df_s.at[\"Eval\", \"label_percent\"] = df_s.at[\"Eval\", \"label\"]\n",
|
432 |
+
"df_s.at[\"SFT\", \"label_percent\"] = df_s.at[\"SFT\", \"label\"]\n",
|
433 |
+
"df_s.at[\"Other\", \"label_percent\"] = df_s.at[\"Other\", \"label\"]\n",
|
434 |
+
"df_s.at[\"Pretrain\", \"label_percent\"] = \" \"\n",
|
435 |
+
"df_s.at[\"Debug\", \"label_gtime_percent\"] = df_s.at[\"Debug\", \"label_gtime_percent\"].replace(\"%\", \"\\n%\")\n",
|
436 |
+
"\n",
|
437 |
+
"\n",
|
438 |
+
"cmp_treemap = sns.color_palette(\"pastel\")\n",
|
439 |
+
"label = df_s.index.to_list()\n",
|
440 |
+
"df_s[\"color\"] = cmp_treemap[: len(df_s)]"
|
441 |
+
]
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"cell_type": "code",
|
445 |
+
"execution_count": null,
|
446 |
+
"metadata": {},
|
447 |
+
"outputs": [],
|
448 |
+
"source": [
|
449 |
+
"fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(9, 4.2))\n",
|
450 |
+
"FONT = 15\n",
|
451 |
+
"\n",
|
452 |
+
"###### Fig 1 ######\n",
|
453 |
+
"df_s.sort_values(by=\"count_percent\", ascending=False, inplace=True)\n",
|
454 |
+
"squarify.plot(\n",
|
455 |
+
" ax=ax1,\n",
|
456 |
+
" sizes=list(df_s[\"job_count\"].values),\n",
|
457 |
+
" label=df_s[\"label_percent\"],\n",
|
458 |
+
" text_kwargs={\"fontsize\": FONT},\n",
|
459 |
+
" color=df_s[\"color\"],\n",
|
460 |
+
" bar_kwargs={\"alpha\": 0.8, \"linewidth\": 1, \"edgecolor\": \"k\"},\n",
|
461 |
+
")\n",
|
462 |
+
"\n",
|
463 |
+
"\n",
|
464 |
+
"handles, labels = ax1.get_legend_handles_labels()\n",
|
465 |
+
"handles_new = [handles[0], handles[-1], handles[1], handles[3], handles[4], handles[2]]\n",
|
466 |
+
"fig.legend(\n",
|
467 |
+
" handles=handles_new, labels=label, ncols=6, bbox_to_anchor=(0.0, 1.135), loc=2, columnspacing=0.82, handletextpad=0.2\n",
|
468 |
+
")\n",
|
469 |
+
"\n",
|
470 |
+
"###### Fig 2 ######\n",
|
471 |
+
"df_s.sort_values(by=\"gtime\", ascending=False, inplace=True)\n",
|
472 |
+
"squarify.plot(\n",
|
473 |
+
" ax=ax2,\n",
|
474 |
+
" sizes=list(df_s[\"gtime\"].values),\n",
|
475 |
+
" label=df_s[\"label_gtime_percent\"],\n",
|
476 |
+
" text_kwargs={\"fontsize\": FONT},\n",
|
477 |
+
" color=df_s[\"color\"],\n",
|
478 |
+
" bar_kwargs={\"alpha\": 0.8, \"linewidth\": 1, \"edgecolor\": \"k\"},\n",
|
479 |
+
")\n",
|
480 |
+
"\n",
|
481 |
+
"plt.tick_params(axis=\"both\", which=\"both\", bottom=False, top=False, left=False, right=False)\n",
|
482 |
+
"\n",
|
483 |
+
"ax1.set_xlabel(f\"(a) Job Count\", fontsize=16)\n",
|
484 |
+
"ax2.set_xlabel(f\"(b) GPU Time\", fontsize=16)\n",
|
485 |
+
"\n",
|
486 |
+
"\n",
|
487 |
+
"###### Fig 3 ######\n",
|
488 |
+
"df_k.sort_values(by=\"count_percent\", ascending=False, inplace=True)\n",
|
489 |
+
"df_k[\"color\"] = [df_s[\"color\"][job_name] for job_name in df_k.index]\n",
|
490 |
+
"\n",
|
491 |
+
"squarify.plot(\n",
|
492 |
+
" ax=ax3,\n",
|
493 |
+
" sizes=list(df_k[\"job_count\"].values),\n",
|
494 |
+
" label=df_k[\"label_percent\"],\n",
|
495 |
+
" text_kwargs={\"fontsize\": FONT},\n",
|
496 |
+
" color=df_k[\"color\"],\n",
|
497 |
+
" bar_kwargs={\"alpha\": 0.8, \"linewidth\": 1, \"edgecolor\": \"k\"},\n",
|
498 |
+
")\n",
|
499 |
+
"\n",
|
500 |
+
"###### Fig 4 ######\n",
|
501 |
+
"df_k.sort_values(by=\"gtime\", ascending=False, inplace=True)\n",
|
502 |
+
"squarify.plot(\n",
|
503 |
+
" ax=ax4,\n",
|
504 |
+
" sizes=list(df_k[\"gtime\"].values),\n",
|
505 |
+
" label=df_k[\"label_gtime_percent\"],\n",
|
506 |
+
" text_kwargs={\"fontsize\": FONT},\n",
|
507 |
+
" color=df_k[\"color\"],\n",
|
508 |
+
" bar_kwargs={\"alpha\": 0.8, \"linewidth\": 1, \"edgecolor\": \"k\"},\n",
|
509 |
+
")\n",
|
510 |
+
"\n",
|
511 |
+
"ax1.annotate(\n",
|
512 |
+
" df_s.at[\"Pretrain\", \"label\"].split(\"\\n\")[1],\n",
|
513 |
+
" xy=(97, 96),\n",
|
514 |
+
" xytext=(90, 70),\n",
|
515 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
516 |
+
" color=\"black\",\n",
|
517 |
+
" fontsize=15,\n",
|
518 |
+
")\n",
|
519 |
+
"\n",
|
520 |
+
"ax3.annotate(\n",
|
521 |
+
" df_k.at[\"Other\", \"label\"].split(\"\\n\")[1],\n",
|
522 |
+
" xy=(98.5, 92),\n",
|
523 |
+
" xytext=(80, 80),\n",
|
524 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
525 |
+
" color=\"black\",\n",
|
526 |
+
" fontsize=15,\n",
|
527 |
+
")\n",
|
528 |
+
"\n",
|
529 |
+
"ax4.annotate(\n",
|
530 |
+
" df_k.at[\"Eval\", \"label_gtime\"].split(\"\\n\")[1],\n",
|
531 |
+
" xy=(98.5, 93),\n",
|
532 |
+
" xytext=(80, 80),\n",
|
533 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
534 |
+
" color=\"black\",\n",
|
535 |
+
" fontsize=15,\n",
|
536 |
+
")\n",
|
537 |
+
"\n",
|
538 |
+
"plt.tick_params(axis=\"both\", which=\"both\", bottom=False, top=False, left=False, right=False)\n",
|
539 |
+
"\n",
|
540 |
+
"ax3.set_xlabel(f\"(c) Job Count\", fontsize=16)\n",
|
541 |
+
"ax4.set_xlabel(f\"(d) GPU Time\", fontsize=16, labelpad=8)\n",
|
542 |
+
"\n",
|
543 |
+
"ax1.set_xticks([])\n",
|
544 |
+
"ax1.set_yticks([])\n",
|
545 |
+
"ax2.set_xticks([])\n",
|
546 |
+
"ax2.set_yticks([])\n",
|
547 |
+
"ax3.set_xticks([])\n",
|
548 |
+
"ax3.set_yticks([])\n",
|
549 |
+
"ax4.set_xticks([])\n",
|
550 |
+
"ax4.set_yticks([])\n",
|
551 |
+
"\n",
|
552 |
+
"ax1.text(0.015, 0.03, \"Seren\", transform=ax1.transAxes, size=18, fontweight=\"bold\")\n",
|
553 |
+
"ax2.text(0.02, 0.03, \"Seren\", transform=ax2.transAxes, size=18, fontweight=\"bold\")\n",
|
554 |
+
"ax3.text(0.02, 0.03, \"Kalos\", transform=ax3.transAxes, size=18, fontweight=\"bold\")\n",
|
555 |
+
"ax4.text(0.02, 0.03, \"Kalos\", transform=ax4.transAxes, size=18, fontweight=\"bold\")\n",
|
556 |
+
"fig.savefig(f\"{SAVEPATH}/treemap_job_dist.pdf\", bbox_inches=\"tight\")"
|
557 |
+
]
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"cell_type": "markdown",
|
561 |
+
"metadata": {},
|
562 |
+
"source": [
|
563 |
+
"#### CDF: Duration and Queuing Delay of Different Type"
|
564 |
+
]
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"cell_type": "code",
|
568 |
+
"execution_count": null,
|
569 |
+
"metadata": {},
|
570 |
+
"outputs": [],
|
571 |
+
"source": [
|
572 |
+
"\"\"\"\n",
|
573 |
+
"(a) Seren Duration (b) Seren Queuing (c) Kalos Duration (d) Kalos Queuing\n",
|
574 |
+
"\"\"\"\n",
|
575 |
+
"\n",
|
576 |
+
"# Duration part\n",
|
577 |
+
"x = [2**i for i in range(0, 22)]\n",
|
578 |
+
"y_gpu_seren_other = calculate_num_cdf_customized_xaxis(\n",
|
579 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Other\")], x_axis=x, key=\"duration\"\n",
|
580 |
+
")\n",
|
581 |
+
"y_gpu_seren_debug = calculate_num_cdf_customized_xaxis(\n",
|
582 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Debug\")], x_axis=x, key=\"duration\"\n",
|
583 |
+
")\n",
|
584 |
+
"y_gpu_seren_pretrain = calculate_num_cdf_customized_xaxis(\n",
|
585 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Pretrain\")], x_axis=x, key=\"duration\"\n",
|
586 |
+
")\n",
|
587 |
+
"y_gpu_seren_eval = calculate_num_cdf_customized_xaxis(\n",
|
588 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Eval\")], x_axis=x, key=\"duration\"\n",
|
589 |
+
")\n",
|
590 |
+
"y_gpu_seren_tuning = calculate_num_cdf_customized_xaxis(\n",
|
591 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"SFT\")], x_axis=x, key=\"duration\"\n",
|
592 |
+
")\n",
|
593 |
+
"y_gpu_seren_mllm = calculate_num_cdf_customized_xaxis(\n",
|
594 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"MLLM\")], x_axis=x, key=\"duration\"\n",
|
595 |
+
")\n",
|
596 |
+
"\n",
|
597 |
+
"y_gpu_kalos_other = calculate_num_cdf_customized_xaxis(\n",
|
598 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Other\")], x_axis=x, key=\"duration\"\n",
|
599 |
+
")\n",
|
600 |
+
"y_gpu_kalos_debug = calculate_num_cdf_customized_xaxis(\n",
|
601 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Debug\")], x_axis=x, key=\"duration\"\n",
|
602 |
+
")\n",
|
603 |
+
"y_gpu_kalos_pretrain = calculate_num_cdf_customized_xaxis(\n",
|
604 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Pretrain\")], x_axis=x, key=\"duration\"\n",
|
605 |
+
")\n",
|
606 |
+
"y_gpu_kalos_eval = calculate_num_cdf_customized_xaxis(\n",
|
607 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Eval\")], x_axis=x, key=\"duration\"\n",
|
608 |
+
")\n",
|
609 |
+
"y_gpu_kalos_tuning = calculate_num_cdf_customized_xaxis(\n",
|
610 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"SFT\")], x_axis=x, key=\"duration\"\n",
|
611 |
+
")\n",
|
612 |
+
"\n",
|
613 |
+
"# Queuing part\n",
|
614 |
+
"x2 = [2**i for i in range(0, 16)]\n",
|
615 |
+
"y_que_s_other = calculate_num_cdf_customized_xaxis(\n",
|
616 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Other\")], x_axis=x2, key=\"queue\"\n",
|
617 |
+
")\n",
|
618 |
+
"y_que_s_debug = calculate_num_cdf_customized_xaxis(\n",
|
619 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Debug\")], x_axis=x2, key=\"queue\"\n",
|
620 |
+
")\n",
|
621 |
+
"y_que_s_pretrain = calculate_num_cdf_customized_xaxis(\n",
|
622 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Pretrain\")], x_axis=x2, key=\"queue\"\n",
|
623 |
+
")\n",
|
624 |
+
"y_que_s_eval = calculate_num_cdf_customized_xaxis(\n",
|
625 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"Eval\")], x_axis=x2, key=\"queue\"\n",
|
626 |
+
")\n",
|
627 |
+
"y_que_s_tuning = calculate_num_cdf_customized_xaxis(\n",
|
628 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"SFT\")], x_axis=x2, key=\"queue\"\n",
|
629 |
+
")\n",
|
630 |
+
"y_que_s_mllm = calculate_num_cdf_customized_xaxis(\n",
|
631 |
+
" data_seren[(data_seren[\"gpu_num\"] > 0) & (data_seren[\"type\"] == \"MLLM\")], x_axis=x2, key=\"queue\"\n",
|
632 |
+
")\n",
|
633 |
+
"\n",
|
634 |
+
"y_que_ali_other = calculate_num_cdf_customized_xaxis(\n",
|
635 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Other\")], x_axis=x2, key=\"queue\"\n",
|
636 |
+
")\n",
|
637 |
+
"y_que_ali_debug = calculate_num_cdf_customized_xaxis(\n",
|
638 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Debug\")], x_axis=x2, key=\"queue\"\n",
|
639 |
+
")\n",
|
640 |
+
"y_que_ali_pretrain = calculate_num_cdf_customized_xaxis(\n",
|
641 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Pretrain\")], x_axis=x2, key=\"queue\"\n",
|
642 |
+
")\n",
|
643 |
+
"y_que_ali_eval = calculate_num_cdf_customized_xaxis(\n",
|
644 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"Eval\")], x_axis=x2, key=\"queue\"\n",
|
645 |
+
")\n",
|
646 |
+
"y_que_ali_tuning = calculate_num_cdf_customized_xaxis(\n",
|
647 |
+
" data_kalos[(data_kalos[\"gpu_num\"] > 0) & (data_kalos[\"type\"] == \"SFT\")], x_axis=x2, key=\"queue\"\n",
|
648 |
+
")"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"cell_type": "code",
|
653 |
+
"execution_count": null,
|
654 |
+
"metadata": {},
|
655 |
+
"outputs": [],
|
656 |
+
"source": [
|
657 |
+
"linestyles = [\"--\", \"-.\", \":\", \"--\", \"-.\", \":\"]\n",
|
658 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
659 |
+
"fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(9, 7))\n",
|
660 |
+
"\n",
|
661 |
+
"# (a) Seren Duration\n",
|
662 |
+
"ax1.plot(x, y_gpu_seren_eval, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Evaluation\")\n",
|
663 |
+
"ax1.plot(x, y_gpu_seren_pretrain, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Pretrain\")\n",
|
664 |
+
"ax1.plot(x, y_gpu_seren_tuning, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"SFT\")\n",
|
665 |
+
"ax1.plot(x, y_gpu_seren_mllm, linestyles[0], linewidth=3, alpha=0.9, color=cmp[3], label=\"MLLM\")\n",
|
666 |
+
"ax1.plot(x, y_gpu_seren_debug, linestyles[1], linewidth=3, alpha=0.9, color=cmp[4], label=\"Debug\")\n",
|
667 |
+
"ax1.plot(x, y_gpu_seren_other, linestyles[2], linewidth=3, alpha=0.9, color=cmp[5], label=\"Other\")\n",
|
668 |
+
"\n",
|
669 |
+
"\n",
|
670 |
+
"# (b) Seren Queuing\n",
|
671 |
+
"ax2.plot(x2, y_que_s_eval, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Evaluation\")\n",
|
672 |
+
"ax2.plot(x2, y_que_s_pretrain, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Pretrain\")\n",
|
673 |
+
"ax2.plot(x2, y_que_s_tuning, linestyles[2], linewidth=3, alpha=0.9, color=cmp[2], label=\"SFT\")\n",
|
674 |
+
"ax2.plot(x2, y_que_s_mllm, linestyles[0], linewidth=3, alpha=0.9, color=cmp[3], label=\"MLLM\")\n",
|
675 |
+
"ax2.plot(x2, y_que_s_debug, linestyles[1], linewidth=3, alpha=0.9, color=cmp[4], label=\"Debug\")\n",
|
676 |
+
"ax2.plot(x2, y_que_s_other, linestyles[2], linewidth=3, alpha=0.9, color=cmp[5], label=\"Other\")\n",
|
677 |
+
"\n",
|
678 |
+
"# (c) Kalos Duration\n",
|
679 |
+
"ax3.plot(x, y_gpu_kalos_eval, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Evaluation\")\n",
|
680 |
+
"ax3.plot(x, y_gpu_kalos_pretrain, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Pretrain\")\n",
|
681 |
+
"ax3.plot(x, y_gpu_kalos_debug, linestyles[1], linewidth=3, alpha=0.9, color=cmp[4], label=\"Debug\")\n",
|
682 |
+
"ax3.plot(x, y_gpu_kalos_other, linestyles[2], linewidth=3, alpha=0.9, color=cmp[5], label=\"Other\")\n",
|
683 |
+
"\n",
|
684 |
+
"\n",
|
685 |
+
"# (d) Kalos Queuing\n",
|
686 |
+
"ax4.plot(x2, y_que_ali_eval, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Evaluation\")\n",
|
687 |
+
"ax4.plot(x2, y_que_ali_pretrain, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Pretrain\")\n",
|
688 |
+
"ax4.plot(x2, y_que_ali_debug, linestyles[1], linewidth=3, alpha=0.9, color=cmp[4], label=\"Debug\")\n",
|
689 |
+
"ax4.plot(x2, y_que_ali_other, linestyles[2], linewidth=3, alpha=0.9, color=cmp[5], label=\"Other\")\n",
|
690 |
+
"\n",
|
691 |
+
"ax1.set_xlabel(f\"(a) Job Duration (s)\")\n",
|
692 |
+
"ax1.set_ylabel(f\"CDF (%)\")\n",
|
693 |
+
"ax1.set_xscale(\"log\")\n",
|
694 |
+
"ax1.set_xticks([1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6])\n",
|
695 |
+
"ax1.set_xlim(1, x[-1])\n",
|
696 |
+
"ax1.set_ylim(-0.5, 100.8)\n",
|
697 |
+
"handles, labels = ax1.get_legend_handles_labels()\n",
|
698 |
+
"fig.legend(handles=handles, labels=labels, ncols=6, bbox_to_anchor=(-0.01, 1.08), loc=2, columnspacing=0.9, handletextpad=0.2)\n",
|
699 |
+
"ax1.grid(linestyle=\":\")\n",
|
700 |
+
"\n",
|
701 |
+
"ax2.set_xlabel(f\"(b) Job Queuing Delay (s)\")\n",
|
702 |
+
"ax2.set_ylabel(f\"CDF (%)\")\n",
|
703 |
+
"ax2.set_xscale(\"log\")\n",
|
704 |
+
"ax2.set_xticks([1e0, 1e1, 1e2, 1e3, 1e4])\n",
|
705 |
+
"ax2.set_xlim(1, x2[-1])\n",
|
706 |
+
"ax2.set_ylim(-0.5, 100.8)\n",
|
707 |
+
"ax2.grid(linestyle=\":\")\n",
|
708 |
+
"\n",
|
709 |
+
"ax3.set_xlabel(f\"(c) Job Duration (s)\")\n",
|
710 |
+
"ax3.set_ylabel(f\"CDF (%)\")\n",
|
711 |
+
"ax3.set_xscale(\"log\")\n",
|
712 |
+
"ax3.set_xticks([1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6])\n",
|
713 |
+
"ax3.set_xlim(1, x[-1])\n",
|
714 |
+
"ax3.set_ylim(-0.5, 100.8)\n",
|
715 |
+
"ax3.grid(linestyle=\":\")\n",
|
716 |
+
"\n",
|
717 |
+
"ax4.set_xlabel(f\"(d) Job Queuing Delay (s)\")\n",
|
718 |
+
"ax4.set_ylabel(f\"CDF (%)\")\n",
|
719 |
+
"ax4.set_xscale(\"log\")\n",
|
720 |
+
"ax4.set_xticks([1e0, 1e1, 1e2, 1e3, 1e4])\n",
|
721 |
+
"ax4.set_xlim(1, x2[-1])\n",
|
722 |
+
"ax4.set_ylim(-0.5, 100.8)\n",
|
723 |
+
"ax4.grid(linestyle=\":\")\n",
|
724 |
+
"\n",
|
725 |
+
"# 1 hour and 1 day\n",
|
726 |
+
"ax1.axvline(x=3600, ls=\"--\", alpha=0.6, c=\"gray\", ymax=0.94, lw=1.5)\n",
|
727 |
+
"ax1.axvline(x=3600 * 24, ls=\"--\", alpha=0.9, c=\"gray\", ymax=0.94, lw=1.5)\n",
|
728 |
+
"ax3.axvline(x=3600, ls=\"--\", alpha=0.6, c=\"gray\", ymax=0.94, lw=1.5)\n",
|
729 |
+
"ax3.axvline(x=3600 * 24, ls=\"--\", alpha=0.9, c=\"gray\", ymax=0.94, lw=1.5)\n",
|
730 |
+
"\n",
|
731 |
+
"sns.despine()\n",
|
732 |
+
"ax1.text(0.78, 0.03, \"Seren\", transform=ax1.transAxes, size=20, fontweight=\"bold\")\n",
|
733 |
+
"ax2.text(0.78, 0.03, \"Seren\", transform=ax2.transAxes, size=20, fontweight=\"bold\")\n",
|
734 |
+
"ax3.text(0.78, 0.03, \"Kalos\", transform=ax3.transAxes, size=20, fontweight=\"bold\")\n",
|
735 |
+
"ax4.text(0.78, 0.03, \"Kalos\", transform=ax4.transAxes, size=20, fontweight=\"bold\")\n",
|
736 |
+
"\n",
|
737 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_job_duration_queue.pdf\", bbox_inches=\"tight\")"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"cell_type": "markdown",
|
742 |
+
"metadata": {},
|
743 |
+
"source": [
|
744 |
+
"#### Box Plot: Request GPU number Different Type"
|
745 |
+
]
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"cell_type": "code",
|
749 |
+
"execution_count": null,
|
750 |
+
"metadata": {},
|
751 |
+
"outputs": [],
|
752 |
+
"source": [
|
753 |
+
"cmap = sns.color_palette(\"pastel\")\n",
|
754 |
+
"fig, (ax1, ax2) = plt.subplots(\n",
|
755 |
+
" ncols=2,\n",
|
756 |
+
" nrows=1,\n",
|
757 |
+
" gridspec_kw={\"width_ratios\": [4.2, 3]},\n",
|
758 |
+
" constrained_layout=True,\n",
|
759 |
+
" figsize=(9, 3.75),\n",
|
760 |
+
")\n",
|
761 |
+
"\n",
|
762 |
+
"############ Fig 1 ############\n",
|
763 |
+
"data_seren.sort_values(by=\"gpu_num\", ascending=False, inplace=True)\n",
|
764 |
+
"data_seren[\"type\"].replace(\"SFT\", \"SFT\", inplace=True)\n",
|
765 |
+
"\n",
|
766 |
+
"x_ticks = [\n",
|
767 |
+
" \"Eval\",\n",
|
768 |
+
" \"Pretrain\",\n",
|
769 |
+
" \"SFT\",\n",
|
770 |
+
" \"MLLM\",\n",
|
771 |
+
" \"Debug\",\n",
|
772 |
+
" \"Other\",\n",
|
773 |
+
"]\n",
|
774 |
+
"\n",
|
775 |
+
"flierprops = dict(marker=\".\", markerfacecolor=\"k\", markersize=2, linestyle=\"none\")\n",
|
776 |
+
"sns.boxplot(\n",
|
777 |
+
" x=\"type\",\n",
|
778 |
+
" y=\"gpu_num\",\n",
|
779 |
+
" data=data_seren,\n",
|
780 |
+
" flierprops=flierprops,\n",
|
781 |
+
" width=0.6,\n",
|
782 |
+
" linewidth=2.2,\n",
|
783 |
+
" saturation=2,\n",
|
784 |
+
" palette=cmap,\n",
|
785 |
+
" ax=ax1,\n",
|
786 |
+
" order=x_ticks,\n",
|
787 |
+
" boxprops=dict(alpha=1),\n",
|
788 |
+
")\n",
|
789 |
+
"sns.color_palette(\"tab10\")\n",
|
790 |
+
"ax1.set_xlabel(\"(a) Seren\")\n",
|
791 |
+
"ax1.set_xticklabels(ax1.get_xticklabels(), rotation=0)\n",
|
792 |
+
"ax1.set_ylabel(f\"Number of GPUs\")\n",
|
793 |
+
"ax1.set_yscale(\"log\")\n",
|
794 |
+
"ax1.grid(axis=\"y\", linestyle=\":\")\n",
|
795 |
+
"\n",
|
796 |
+
"\n",
|
797 |
+
"############ Fig 2 ############\n",
|
798 |
+
"data_kalos.sort_values(by=\"gpu_num\", ascending=False, inplace=True)\n",
|
799 |
+
"data_kalos = data_kalos[data_kalos[\"type\"] != \"SFT\"]\n",
|
800 |
+
"x_ticks_k = [\n",
|
801 |
+
" \"Eval\",\n",
|
802 |
+
" \"Pretrain\",\n",
|
803 |
+
" \"Debug\",\n",
|
804 |
+
" \"Other\",\n",
|
805 |
+
"]\n",
|
806 |
+
"my_pal = [cmap[0], cmap[1], cmap[4], cmap[5]]\n",
|
807 |
+
"\n",
|
808 |
+
"flierprops = dict(marker=\".\", markerfacecolor=\"k\", markersize=3, linestyle=\"none\")\n",
|
809 |
+
"sns.boxplot(\n",
|
810 |
+
" x=\"type\",\n",
|
811 |
+
" y=\"gpu_num\",\n",
|
812 |
+
" data=data_kalos,\n",
|
813 |
+
" flierprops=flierprops,\n",
|
814 |
+
" width=0.6,\n",
|
815 |
+
" linewidth=2.2,\n",
|
816 |
+
" saturation=2,\n",
|
817 |
+
" palette=my_pal,\n",
|
818 |
+
" ax=ax2,\n",
|
819 |
+
" order=x_ticks_k,\n",
|
820 |
+
" boxprops=dict(alpha=1),\n",
|
821 |
+
")\n",
|
822 |
+
"sns.color_palette(\"tab10\")\n",
|
823 |
+
"ax2.set_xlabel(\"(b) Kalos\")\n",
|
824 |
+
"ax2.set_ylabel(None)\n",
|
825 |
+
"ax2.set_xticklabels(ax2.get_xticklabels(), rotation=0)\n",
|
826 |
+
"ax2.set_yscale(\"log\")\n",
|
827 |
+
"ax2.grid(axis=\"y\", linestyle=\":\")\n",
|
828 |
+
"\n",
|
829 |
+
"sns.despine()\n",
|
830 |
+
"fig.savefig(f\"{SAVEPATH}/box_gpu_num.pdf\", bbox_inches=\"tight\")"
|
831 |
+
]
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"cell_type": "markdown",
|
835 |
+
"metadata": {},
|
836 |
+
"source": [
|
837 |
+
"#### CDF: Resource Utilization"
|
838 |
+
]
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"cell_type": "code",
|
842 |
+
"execution_count": null,
|
843 |
+
"metadata": {},
|
844 |
+
"outputs": [],
|
845 |
+
"source": [
|
846 |
+
"with open(f\"{PKLPATH}/util_gpu_seren.pkl\", \"rb\") as file:\n",
|
847 |
+
" _, _, x2, y2, x3, y3, x4, y4, x5, y5 = pickle.load(file)\n",
|
848 |
+
"with open(f\"{PKLPATH}/util_gpu_kalos_full.pkl\", \"rb\") as file:\n",
|
849 |
+
" _, _, x2_k, y2_k, x3_k, y3_k, x4_k, y4_k, x5_k, y5_k = pickle.load(file)\n",
|
850 |
+
"with open(f\"{PKLPATH}/util_cpu_mem_seren.pkl\", \"rb\") as file:\n",
|
851 |
+
" x6, y6, x7, y7 = pickle.load(file)\n",
|
852 |
+
"with open(f\"{PKLPATH}/util_cpu_mem_kalos.pkl\", \"rb\") as file:\n",
|
853 |
+
" x6_k, y6_k, x7_k, y7_k = pickle.load(file)\n",
|
854 |
+
"with open(f\"{PKLPATH}/ib_seren.pkl\", \"rb\") as file:\n",
|
855 |
+
" x8, y8, x9, y9 = pickle.load(file)\n",
|
856 |
+
"\n",
|
857 |
+
"x8 = x8 / x8.max() * 100\n",
|
858 |
+
"x9 = x9 / x9.max() * 100\n",
|
859 |
+
"\n",
|
860 |
+
"linestyles = [\"--\", \":\", \"--\", \"-.\", \":\"]\n",
|
861 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
862 |
+
"fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(9, 7))\n",
|
863 |
+
"\n",
|
864 |
+
"############ Fig 1: SM, Occupancy ############\n",
|
865 |
+
"ax1.plot(x3, y3, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren SM Activity\")\n",
|
866 |
+
"ax1.plot(x5, y5, linestyles[1], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren Occupancy\")\n",
|
867 |
+
"ax1.plot(x3_k, y3_k, linestyles[0], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos SM Activity\")\n",
|
868 |
+
"ax1.plot(x5_k, y5_k, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos Occupancy\")\n",
|
869 |
+
"\n",
|
870 |
+
"############ Fig 2: CPU mem usage, GPU mem usage ############\n",
|
871 |
+
"ax2.plot(x7, y7, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren CPU Mem\")\n",
|
872 |
+
"ax2.plot(x2, y2, linestyles[1], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren GPU Mem\")\n",
|
873 |
+
"ax2.plot(x7_k, y7_k, linestyles[0], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos CPU Mem\")\n",
|
874 |
+
"ax2.plot(x2_k, y2_k, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos GPU Mem\")\n",
|
875 |
+
"\n",
|
876 |
+
"############ Fig 3: CPU util ############\n",
|
877 |
+
"ax3.plot(x6, y6, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
878 |
+
"ax3.plot(x6_k, y6_k, linestyles[0], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
879 |
+
"\n",
|
880 |
+
"############ Fig 4: IB send, receive ############\n",
|
881 |
+
"ax4.plot(x8, y8, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"IB Send\")\n",
|
882 |
+
"ax4.plot(x9, y9, linestyles[1], linewidth=3, alpha=0.9, color=cmp[0], label=\"IB Receive\")\n",
|
883 |
+
"\n",
|
884 |
+
"ax1.set_xlabel(f\"(a) GPU DCGM Metric (%)\")\n",
|
885 |
+
"ax1.set_ylabel(f\"CDF (%)\")\n",
|
886 |
+
"ax1.set_xlim(-0.8, 100.8)\n",
|
887 |
+
"ax1.set_ylim(0, 100.8)\n",
|
888 |
+
"ax1.set_xticks([0, 25, 50, 75, 100])\n",
|
889 |
+
"ax1.grid(linestyle=\":\")\n",
|
890 |
+
"\n",
|
891 |
+
"ax2.set_xlabel(f\"(b) Memory Footprint (%)\")\n",
|
892 |
+
"ax2.set_ylabel(f\"CDF (%)\")\n",
|
893 |
+
"ax2.set_xlim(-0.8, 100.8)\n",
|
894 |
+
"ax2.set_xticks([0, 25, 50, 75, 100])\n",
|
895 |
+
"ax2.set_ylim(0, 100.8)\n",
|
896 |
+
"ax2.grid(linestyle=\":\")\n",
|
897 |
+
"\n",
|
898 |
+
"ax3.set_xlabel(f\"(c) CPU Utilization (%)\")\n",
|
899 |
+
"ax3.set_ylabel(f\"CDF (%)\")\n",
|
900 |
+
"ax3.set_xlim(-0.8, 100.8)\n",
|
901 |
+
"ax3.set_xticks([0, 25, 50, 75, 100])\n",
|
902 |
+
"ax3.set_ylim(0, 100.8)\n",
|
903 |
+
"ax3.legend(loc=\"lower right\")\n",
|
904 |
+
"ax3.grid(linestyle=\":\")\n",
|
905 |
+
"\n",
|
906 |
+
"ax4.set_xlabel(f\"(d) Network (%)\")\n",
|
907 |
+
"ax4.set_ylabel(f\"CDF (%)\")\n",
|
908 |
+
"ax4.set_xlim(-0.8, 100.8)\n",
|
909 |
+
"ax4.set_xticks([0, 25, 50, 75, 100])\n",
|
910 |
+
"ax4.set_ylim(0, 100.8)\n",
|
911 |
+
"ax4.legend(loc=\"lower right\")\n",
|
912 |
+
"ax4.grid(linestyle=\":\")\n",
|
913 |
+
"sns.despine()\n",
|
914 |
+
"\n",
|
915 |
+
"\n",
|
916 |
+
"S = mpatches.Patch(facecolor=cmp[0], alpha=0.9)\n",
|
917 |
+
"K = mpatches.Patch(facecolor=cmp[1], alpha=0.9)\n",
|
918 |
+
"A = (Line2D([0], [0], color=\"black\", lw=3, ls=\"--\"),)\n",
|
919 |
+
"B = (Line2D([0], [0], color=\"black\", lw=3, ls=\":\"),)\n",
|
920 |
+
"\n",
|
921 |
+
"legend1 = ax1.legend([S, K], [\"Seren\", \"Kalos\"], bbox_to_anchor=(0.5, 0.62), loc=2, ncol=1, fontsize=17, frameon=False)\n",
|
922 |
+
"\n",
|
923 |
+
"ax1.add_artist(legend1)\n",
|
924 |
+
"\n",
|
925 |
+
"ax1.legend([A, B], [\"SM Activity\", \"TC Activity\"], bbox_to_anchor=(0.3, 0.36), loc=2, ncol=1)\n",
|
926 |
+
"\n",
|
927 |
+
"ax2.legend([A, B], [\"CPU Memory\", \"GPU Memory\"], bbox_to_anchor=(0.25, 0.36), loc=2, ncol=1)\n",
|
928 |
+
"\n",
|
929 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_resource_util.pdf\", bbox_inches=\"tight\")"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"cell_type": "markdown",
|
934 |
+
"metadata": {},
|
935 |
+
"source": [
|
936 |
+
"#### CDF: Temperature"
|
937 |
+
]
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"cell_type": "code",
|
941 |
+
"execution_count": null,
|
942 |
+
"metadata": {},
|
943 |
+
"outputs": [],
|
944 |
+
"source": [
|
945 |
+
"# We use August data for GPU temperature and power\n",
|
946 |
+
"with open(f\"{PKLPATH}/gpu_temp_seren.pkl\", \"rb\") as file:\n",
|
947 |
+
" x, y1, x2, y2 = pickle.load(file)\n",
|
948 |
+
"with open(f\"{PKLPATH}/gpu_temp_kalos.pkl\", \"rb\") as file:\n",
|
949 |
+
" x1_k, y1_k, x2_k, y2_k = pickle.load(file)\n",
|
950 |
+
"with open(f\"{PKLPATH}/gpu_power_seren.pkl\", \"rb\") as file:\n",
|
951 |
+
" x3, y3 = pickle.load(file)\n",
|
952 |
+
"with open(f\"{PKLPATH}/gpu_power_kalos.pkl\", \"rb\") as file:\n",
|
953 |
+
" x3_k, y3_k = pickle.load(file)\n",
|
954 |
+
"\n",
|
955 |
+
"linestyles = [\"-\", \":\", \":\", \"-\"]\n",
|
956 |
+
"fig, ax1 = plt.subplots(ncols=1, nrows=1, constrained_layout=True, figsize=(5, 3.75))\n",
|
957 |
+
"\n",
|
958 |
+
"############ Fig 1: Temperature ############\n",
|
959 |
+
"ax1.plot(x, y1, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren GPU Temp\")\n",
|
960 |
+
"ax1.plot(x2, y2, linestyles[1], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren GPU Mem Temp\")\n",
|
961 |
+
"ax1.plot(x1_k, y1_k, linestyles[0], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos GPU Temp\")\n",
|
962 |
+
"ax1.plot(x2_k, y2_k, linestyles[1], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos GPU Mem Temp\")\n",
|
963 |
+
"\n",
|
964 |
+
"ax1.set_xlabel(f\"Temperature (°C)\")\n",
|
965 |
+
"ax1.set_ylabel(f\"CDF (%)\")\n",
|
966 |
+
"ax1.set_xlim(20, 85)\n",
|
967 |
+
"ax1.set_ylim(0, 100.8)\n",
|
968 |
+
"ax1.grid(linestyle=\":\")\n",
|
969 |
+
"\n",
|
970 |
+
"S = mpatches.Patch(facecolor=cmp[0], alpha=0.9)\n",
|
971 |
+
"K = mpatches.Patch(facecolor=cmp[1], alpha=0.9)\n",
|
972 |
+
"A = (Line2D([0], [0], color=\"black\", lw=3, ls=\"-\"),)\n",
|
973 |
+
"B = (Line2D([0], [0], color=\"black\", lw=3, ls=\":\"),)\n",
|
974 |
+
"\n",
|
975 |
+
"legend1 = ax1.legend([S, K], [\"Seren\", \"Kalos\"], bbox_to_anchor=(0.6, 0.62), loc=2, ncol=1, fontsize=17, frameon=False)\n",
|
976 |
+
"\n",
|
977 |
+
"ax1.add_artist(legend1)\n",
|
978 |
+
"\n",
|
979 |
+
"ax1.legend(\n",
|
980 |
+
" [A, B],\n",
|
981 |
+
" [\"GPU Temp.\", \"GMem Temp.\"],\n",
|
982 |
+
" bbox_to_anchor=(0.4, 0.32),\n",
|
983 |
+
" loc=2,\n",
|
984 |
+
" ncol=1,\n",
|
985 |
+
" fontsize=17,\n",
|
986 |
+
")\n",
|
987 |
+
"\n",
|
988 |
+
"sns.despine()\n",
|
989 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_temperature.pdf\", bbox_inches=\"tight\")"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "markdown",
|
994 |
+
"metadata": {},
|
995 |
+
"source": [
|
996 |
+
"#### CDF: Power"
|
997 |
+
]
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"cell_type": "code",
|
1001 |
+
"execution_count": null,
|
1002 |
+
"metadata": {},
|
1003 |
+
"outputs": [],
|
1004 |
+
"source": [
|
1005 |
+
"with open(f\"{PKLPATH}/server_power.pkl\", \"rb\") as file:\n",
|
1006 |
+
" x1, y1, x2, y2 = pickle.load(file)\n",
|
1007 |
+
"with open(f\"{PKLPATH}/gpu_power_seren.pkl\", \"rb\") as file:\n",
|
1008 |
+
" x3, y3 = pickle.load(file)\n",
|
1009 |
+
"with open(f\"{PKLPATH}/gpu_power_kalos.pkl\", \"rb\") as file:\n",
|
1010 |
+
" x3_k, y3_k = pickle.load(file)"
|
1011 |
+
]
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"cell_type": "code",
|
1015 |
+
"execution_count": null,
|
1016 |
+
"metadata": {},
|
1017 |
+
"outputs": [],
|
1018 |
+
"source": [
|
1019 |
+
"linestyles = [\"--\", \":\", \":\", \"-\"]\n",
|
1020 |
+
"grid_params = dict(width_ratios=[1, 1])\n",
|
1021 |
+
"fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, constrained_layout=True, figsize=(9, 3.75))\n",
|
1022 |
+
"\n",
|
1023 |
+
"############ Fig 1: GPU power ############\n",
|
1024 |
+
"ax1.plot(x3, y3, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"Seren\")\n",
|
1025 |
+
"ax1.plot(x3_k, y3_k, linestyles[0], linewidth=3, alpha=0.9, color=cmp[1], label=\"Kalos\")\n",
|
1026 |
+
"ax1.axvline(x=400, ls=\"--\", alpha=0.6, c=\"gray\", ymax=100, lw=1.5)\n",
|
1027 |
+
"ax1.annotate(\n",
|
1028 |
+
" \"A100 TDP\",\n",
|
1029 |
+
" xy=(400, 33),\n",
|
1030 |
+
" xytext=(420, 20),\n",
|
1031 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
1032 |
+
" color=\"black\",\n",
|
1033 |
+
" fontsize=16,\n",
|
1034 |
+
")\n",
|
1035 |
+
"ax1.annotate(\n",
|
1036 |
+
" \"Max=600\",\n",
|
1037 |
+
" xy=(600, 100),\n",
|
1038 |
+
" xytext=(430, 85),\n",
|
1039 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
1040 |
+
" color=\"black\",\n",
|
1041 |
+
" fontsize=16,\n",
|
1042 |
+
")\n",
|
1043 |
+
"\n",
|
1044 |
+
"############ Fig 2: Server power ############\n",
|
1045 |
+
"ax2.plot(x1, y1, linestyles[0], linewidth=3, alpha=0.9, color=cmp[0], label=\"GPU Node\")\n",
|
1046 |
+
"ax2.plot(x2, y2, linestyles[1], linewidth=3, alpha=0.9, color=cmp[0], label=\"CPU Node\")\n",
|
1047 |
+
"ax2.annotate(\n",
|
1048 |
+
" \"Max=960\",\n",
|
1049 |
+
" xy=(960, 100),\n",
|
1050 |
+
" xytext=(1200, 90),\n",
|
1051 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
1052 |
+
" color=\"black\",\n",
|
1053 |
+
" fontsize=16,\n",
|
1054 |
+
")\n",
|
1055 |
+
"ax2.annotate(\n",
|
1056 |
+
" \"Max=6550\",\n",
|
1057 |
+
" xy=(6550, 100),\n",
|
1058 |
+
" xytext=(4500, 70),\n",
|
1059 |
+
" arrowprops=dict(facecolor=\"black\", width=2.5, headwidth=8),\n",
|
1060 |
+
" color=\"black\",\n",
|
1061 |
+
" fontsize=16,\n",
|
1062 |
+
")\n",
|
1063 |
+
"\n",
|
1064 |
+
"ax1.set_xlabel(f\"(a) GPU Power (W)\")\n",
|
1065 |
+
"ax1.set_ylabel(f\"CDF (%)\")\n",
|
1066 |
+
"ax1.set_xlim(-0.8, 610)\n",
|
1067 |
+
"ax1.set_ylim(0, 100.8)\n",
|
1068 |
+
"ax1.legend()\n",
|
1069 |
+
"ax1.grid(linestyle=\":\")\n",
|
1070 |
+
"ax1.xaxis.set_minor_locator(matplotlib.ticker.FixedLocator([60]))\n",
|
1071 |
+
"ax1.xaxis.set_minor_formatter(matplotlib.ticker.FixedFormatter([60]))\n",
|
1072 |
+
"ax1.tick_params(axis=\"x\", which=\"minor\", labelsize=15)\n",
|
1073 |
+
"\n",
|
1074 |
+
"ax2.set_xlabel(f\"(b) Server Power in Seren (W)\")\n",
|
1075 |
+
"ax2.set_ylabel(f\"CDF (%)\")\n",
|
1076 |
+
"ax2.set_xlim(-0.8, x1.max())\n",
|
1077 |
+
"ax2.set_ylim(0, 100.8)\n",
|
1078 |
+
"ax2.legend(loc=\"lower right\")\n",
|
1079 |
+
"ax2.grid(linestyle=\":\")\n",
|
1080 |
+
"ax2.xaxis.set_minor_locator(matplotlib.ticker.FixedLocator([520]))\n",
|
1081 |
+
"ax2.xaxis.set_minor_formatter(matplotlib.ticker.FixedFormatter([520]))\n",
|
1082 |
+
"ax2.tick_params(axis=\"x\", which=\"minor\", labelsize=15)\n",
|
1083 |
+
"sns.despine()\n",
|
1084 |
+
"\n",
|
1085 |
+
"fig.savefig(f\"{SAVEPATH}/cdf_power.pdf\", bbox_inches=\"tight\")"
|
1086 |
+
]
|
1087 |
+
}
|
1088 |
+
],
|
1089 |
+
"metadata": {
|
1090 |
+
"kernelspec": {
|
1091 |
+
"display_name": "base",
|
1092 |
+
"language": "python",
|
1093 |
+
"name": "python3"
|
1094 |
+
},
|
1095 |
+
"language_info": {
|
1096 |
+
"codemirror_mode": {
|
1097 |
+
"name": "ipython",
|
1098 |
+
"version": 3
|
1099 |
+
},
|
1100 |
+
"file_extension": ".py",
|
1101 |
+
"mimetype": "text/x-python",
|
1102 |
+
"name": "python",
|
1103 |
+
"nbconvert_exporter": "python",
|
1104 |
+
"pygments_lexer": "ipython3",
|
1105 |
+
"version": "3.9.16"
|
1106 |
+
},
|
1107 |
+
"orig_nbformat": 4
|
1108 |
+
},
|
1109 |
+
"nbformat": 4,
|
1110 |
+
"nbformat_minor": 2
|
1111 |
+
}
|
data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/cluster_summary.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
id,job_num,cpu_job_num,gpu_job_num,avg_run_time_gpu,avg_que_time_gpu,avg_gpu_num,med_run_time_gpu,med_que_time_gpu,med_gpu_num,max_run_time_gpu,max_gpu,complete_rate_gpu,cancel_rate_gpu,fail_rate_gpu,complete_gpu_time,cancel_gpu_time,fail_gpu_time,complete_rate_gpu_time,cancel_rate_gpu_time,fail_rate_gpu_time,avg_run_time_cpu,avg_que_time_cpu,med_run_time_cpu,med_que_time_cpu,complete_rate_cpu,cancel_rate_cpu,fail_rate_cpu
|
2 |
+
Seren,1031550,367737,663813,1414.335,445.984,5.68,122.0,1.0,1.0,1209604.0,1024.0,0.497,0.075,0.429,4560592618.0,14274584510.0,2675447459.0,0.212,0.664,0.124,733.894,4.813,14.0,1.0,0.858,0.039,0.102
|
3 |
+
Kalos,62413,42506,19907,1259.689,214.179,26.77,124.0,17.0,1.0,625740.0,1024.0,0.541,0.062,0.397,1667685146.0,3239202064.0,426292851.0,0.313,0.607,0.08,118.352,88.401,22.0,9.0,0.86,0.001,0.14
|
4 |
+
Philly,112956,0,112956,18006.055,3760.604,1.928,874.0,189.0,1.0,4240676.0,128.0,0.604,0.09,0.305,2210176414.0,2025326056.0,2659215061.0,0.321,0.294,0.386,,,,,,,
|
5 |
+
Helios,3362981,1782517,1580464,6651.681,862.047,3.716,206.0,0.0,1.0,4320009.0,2048.0,0.624,0.221,0.155,39994296320.0,30715109125.0,7288334702.0,0.513,0.394,0.093,628.759,73.907,2.0,0.0,0.909,0.03,0.061
|
6 |
+
PAI,1260920,0,1037085,4787.109,401.742,0.683,480.667,9.0,0.5,626371.0,8.0,,,,,,,,,,,,,,,,
|
data/generate_utilization_pkl.ipynb
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Process Utilization Files and Generate a Pickle Files for Plotting"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"### Note that running following scripts is time consuming and should be done only once. The pickle files are provided in the `util_pkl` directory."
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"import pytz\n",
|
24 |
+
"import pickle\n",
|
25 |
+
"import numpy as np\n",
|
26 |
+
"import pandas as pd\n",
|
27 |
+
"\n",
|
28 |
+
"from glob import glob\n",
|
29 |
+
"from pathlib import Path\n",
|
30 |
+
"from utils import cluster_metric_header, dcgm_metric_header\n",
|
31 |
+
"\n",
|
32 |
+
"\"\"\" cluster_metric_header\n",
|
33 |
+
"0: \"CPU\",\n",
|
34 |
+
"1: \"MEMORY\",\n",
|
35 |
+
"2: \"IB_SEND\",\n",
|
36 |
+
"3: \"RECEIVE\",\n",
|
37 |
+
"\"\"\"\n",
|
38 |
+
"\"\"\" dcgm_metric_header\n",
|
39 |
+
"0: XID_ERRORS\n",
|
40 |
+
"1: GPU_TEMP\n",
|
41 |
+
"2: MEMORY_TEMP\n",
|
42 |
+
"3: MEM_CLOCK\n",
|
43 |
+
"4: MEM_COPY_UTIL\n",
|
44 |
+
"5: FB_FREE\n",
|
45 |
+
"6: FB_USED\n",
|
46 |
+
"7: DRAM_ACTIVE\n",
|
47 |
+
"8: POWER_USAGE\n",
|
48 |
+
"9: GPU_UTIL\n",
|
49 |
+
"10: PIPE_TENSOR_ACTIVE\n",
|
50 |
+
"11: SM_ACTIVE\n",
|
51 |
+
"12: SM_OCCUPANCY\n",
|
52 |
+
"\"\"\"\n",
|
53 |
+
"\n",
|
54 |
+
"SAVEPKL = \"./util_pkl\"\n",
|
55 |
+
"\n",
|
56 |
+
"\n",
|
57 |
+
"def read_csv_with_concat(path=\"./csv\", file_name=None):\n",
|
58 |
+
" file = Path(path, f\"{file_name}.csv\")\n",
|
59 |
+
"\n",
|
60 |
+
" if file.exists():\n",
|
61 |
+
" # If original file exists, read it directly\n",
|
62 |
+
" df = pd.read_csv(file)\n",
|
63 |
+
" print(f\"Reading {file_name}\")\n",
|
64 |
+
" else:\n",
|
65 |
+
" # If original file does not exist, read all the split files\n",
|
66 |
+
" split_files = sorted(glob(f\"{path}/{file_name}-2023-*.csv\"))\n",
|
67 |
+
" print(f\"Reading splitted files: {split_files}\")\n",
|
68 |
+
" df = pd.concat([pd.read_csv(split_file) for split_file in split_files])\n",
|
69 |
+
" df.reset_index(drop=True, inplace=True)\n",
|
70 |
+
" return df\n",
|
71 |
+
"\n",
|
72 |
+
"\n",
|
73 |
+
"def read_concat_parse_save_cluster_metrics(path=\"./csv_cpu\", metrics=cluster_metric_header):\n",
|
74 |
+
" for metric in metrics:\n",
|
75 |
+
" data = read_csv_with_concat(path=path, file_name=metric)\n",
|
76 |
+
" data.drop_duplicates(subset=[\"Time\"], inplace=True)\n",
|
77 |
+
" data.sort_values(by=\"Time\", inplace=True)\n",
|
78 |
+
" data[\"Time\"] = pd.to_datetime(data[\"Time\"], unit=\"s\").dt.tz_localize(pytz.utc).dt.tz_convert(\"Asia/Shanghai\")\n",
|
79 |
+
" data.set_index(\"Time\", drop=True, inplace=True)\n",
|
80 |
+
" print(f\"Column Number: {len(list(data.columns))}, {len(set(list(data.columns)))}\")\n",
|
81 |
+
"\n",
|
82 |
+
" if \"NODE_MEMORY\" in metric:\n",
|
83 |
+
" # Around 2 hours has some bug (ip has additional '.1', like '10.140.0.131' -> '10.140.0.131.1')\n",
|
84 |
+
" data = data[(data.index < \"2023-07-19 11:35:00\") | (data.index > \"2023-07-19 14:01:00\")]\n",
|
85 |
+
"\n",
|
86 |
+
" if \"NODE_CPU\" in metric or \"NODE_MEMORY\" in metric:\n",
|
87 |
+
" data = data * 100 # CPU / Memory Utilization (%)\n",
|
88 |
+
"\n",
|
89 |
+
" if \"NODE_IB\" in metric:\n",
|
90 |
+
" data.rename(columns=lambda x: x.replace(\"-mlx5_0\", \"\"), inplace=True) # Simplified, since one IB NIC per server\n",
|
91 |
+
"\n",
|
92 |
+
" data.dropna(axis=1, how=\"all\", inplace=True)\n",
|
93 |
+
" data = data.round(3)\n",
|
94 |
+
" data.to_csv(f\"./{metric}.csv\")\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"def read_concat_parse_save_dcgm_metrics(path=\"./csv\", metrics=dcgm_metric_header):\n",
|
98 |
+
" for metric in metrics:\n",
|
99 |
+
" data = read_csv_with_concat(path=path, file_name=metric)\n",
|
100 |
+
" data.drop_duplicates(subset=[\"Time\"], inplace=True)\n",
|
101 |
+
" data.sort_values(by=\"Time\", inplace=True)\n",
|
102 |
+
" data[\"Time\"] = pd.to_datetime(data[\"Time\"], unit=\"s\").dt.tz_localize(pytz.utc).dt.tz_convert(\"Asia/Shanghai\")\n",
|
103 |
+
" data.set_index(\"Time\", drop=True, inplace=True)\n",
|
104 |
+
" print(f\"Column Number: {len(list(data.columns))}, {len(set(list(data.columns)))}\")\n",
|
105 |
+
"\n",
|
106 |
+
" # if \"XID\" in metric or \"TEMP\" in metric or \"CLOC\" in metric:\n",
|
107 |
+
" # data = data.astype(int, errors='ignore')\n",
|
108 |
+
"\n",
|
109 |
+
" if \"ACTIVE\" in metric or \"OCCUPANCY\" in metric:\n",
|
110 |
+
" data = data * 100 # CPU / Memory Utilization (%)\n",
|
111 |
+
" data = data.round(3)\n",
|
112 |
+
"\n",
|
113 |
+
" if \"POWER\" in metric:\n",
|
114 |
+
" data = data.round(1)\n",
|
115 |
+
"\n",
|
116 |
+
" data.dropna(axis=0, how=\"all\", inplace=True)\n",
|
117 |
+
" data.dropna(axis=1, how=\"all\", inplace=True)\n",
|
118 |
+
" data.to_csv(f\"./{metric}.csv\")\n",
|
119 |
+
"\n",
|
120 |
+
"\n",
|
121 |
+
"def calculate_sum_cdf_axis100(df, dot_num=1000):\n",
|
122 |
+
" \"\"\"\n",
|
123 |
+
" Calculate quantity percentile CDF, y-axis: 0-100%,\n",
|
124 |
+
" \"\"\"\n",
|
125 |
+
" print(\"Parsing\")\n",
|
126 |
+
" data = df.melt(id_vars=\"Time\", var_name=\"Server\")\n",
|
127 |
+
" data.dropna(subset=[\"value\"], inplace=True)\n",
|
128 |
+
"\n",
|
129 |
+
" y = np.linspace(0, 1, num=dot_num)\n",
|
130 |
+
" x = data[\"value\"].quantile(y).values\n",
|
131 |
+
" y = y * 100\n",
|
132 |
+
" return x, y\n",
|
133 |
+
"\n",
|
134 |
+
"\n",
|
135 |
+
"def calculate_num_cdf_axis100(df, dot_num=1000):\n",
|
136 |
+
" \"\"\"\n",
|
137 |
+
" Calculate quantity percentile CDF, y-axis: 0-100%,\n",
|
138 |
+
" \"\"\"\n",
|
139 |
+
" print(\"Parsing\")\n",
|
140 |
+
" data = df.melt(id_vars=\"Time\", var_name=\"Server\")\n",
|
141 |
+
" data.dropna(subset=[\"value\"], inplace=True)\n",
|
142 |
+
" # data.sort_values('value', ascending=True, inplace=True)\n",
|
143 |
+
" # data.reset_index(drop=True, inplace=True)\n",
|
144 |
+
"\n",
|
145 |
+
" y = np.linspace(0, 1, num=dot_num)\n",
|
146 |
+
" x = data[\"value\"].quantile(y).values\n",
|
147 |
+
" y = y * 100\n",
|
148 |
+
" return x, y"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "markdown",
|
153 |
+
"metadata": {},
|
154 |
+
"source": [
|
155 |
+
"### Example 1: Prometheus Metics (e.g., CPU and Memory Utilization)\n",
|
156 |
+
"\n",
|
157 |
+
"You can change to any metric you want to plot by changing the `file_name` variable in the following script."
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": null,
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": [
|
166 |
+
"data_cpu = read_csv_with_concat(path=\"./seren\", file_name=cluster_metric_header[0])\n",
|
167 |
+
"data_mem = read_csv_with_concat(path=\"./seren\", file_name=cluster_metric_header[1])\n",
|
168 |
+
"x1, y1 = calculate_num_cdf_axis100(data_cpu)\n",
|
169 |
+
"x2, y2 = calculate_num_cdf_axis100(data_mem)\n",
|
170 |
+
"print(\n",
|
171 |
+
" f'CPU Period: (Start) {data_cpu.at[0, \"Time\"].split(\":\")[0]}h (End) {data_cpu.at[len(data_cpu)-1, \"Time\"].split(\":\")[0]}h'\n",
|
172 |
+
")\n",
|
173 |
+
"print(\n",
|
174 |
+
" f'MEM Period: (Start) {data_mem.at[0, \"Time\"].split(\":\")[0]}h (End) {data_mem.at[len(data_mem)-1, \"Time\"].split(\":\")[0]}h'\n",
|
175 |
+
")\n",
|
176 |
+
"\n",
|
177 |
+
"with open(f\"{SAVEPKL}/util_cpu_mem_seren.pkl\", \"wb\") as file:\n",
|
178 |
+
" pickle.dump([x1, y1, x2, y2], file)"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "markdown",
|
183 |
+
"metadata": {},
|
184 |
+
"source": [
|
185 |
+
"### Example 2: NVIDIA DCGM Metics (e.g., GPU and GPU Memory Utilization)\n",
|
186 |
+
"\n",
|
187 |
+
"You can change to any metric you want to plot by changing the `file_name` variable in the following script."
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"data_gpu_util = read_csv_with_concat(path=\"./seren\", file_name=dcgm_metric_header[9]) # \"DCGM_FI_DEV_GPU_UTIL\"\n",
|
197 |
+
"data_gpu_mem = read_csv_with_concat(path=\"./seren\", file_name=dcgm_metric_header[6]) # \"DCGM_FI_DEV_FB_USED\"\n",
|
198 |
+
"data_gpu_mem.iloc[:, 1:] = 100 * data_gpu_mem.iloc[:, 1:] / (80 * 1024)\n",
|
199 |
+
"x1, y1 = calculate_num_cdf_axis100(data_gpu_util)\n",
|
200 |
+
"x2, y2 = calculate_num_cdf_axis100(data_gpu_mem)\n",
|
201 |
+
"\n",
|
202 |
+
"with open(f\"{SAVEPKL}/util_gpu_util_mem_seren.pkl\", \"wb\") as file:\n",
|
203 |
+
" pickle.dump([x1, y1, x2, y2], file)"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"metadata": {},
|
209 |
+
"source": [
|
210 |
+
"### Processing IPMI Power Files"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"df_AB = pd.read_csv(\"./ipmi/GPU_AB_Power.csv\", parse_dates=[\"Time\"])\n",
|
220 |
+
"df_C = pd.read_csv(\"./ipmi/GPU_C_Power.csv\", parse_dates=[\"Time\"])\n",
|
221 |
+
"df_D = pd.read_csv(\"./ipmi/CPU_D_Power.csv\", parse_dates=[\"Time\"])\n",
|
222 |
+
"\n",
|
223 |
+
"df_A = df_AB.dropna()\n",
|
224 |
+
"df_B = df_AB[df_AB.isna().any(axis=1)] # Type B without MEM_Power record\n",
|
225 |
+
"\n",
|
226 |
+
"dfs = {\"GPU_A\": df_A, \"GPU_B\": df_B, \"GPU_C\": df_C, \"CPU_D\": df_D}\n",
|
227 |
+
"\n",
|
228 |
+
"# Extract sys_total_power\n",
|
229 |
+
"df_A_power = df_A[[\"Time\", \"Sys_Total_Power\"]]\n",
|
230 |
+
"df_B_power = df_B[[\"Time\", \"Sys_Total_Power\"]]\n",
|
231 |
+
"df_C_power = df_C[[\"Time\", \"Sys_Total_Power\"]]\n",
|
232 |
+
"df_gpu = pd.concat([df_A_power, df_B_power, df_C_power])\n",
|
233 |
+
"\n",
|
234 |
+
"x1, y1 = calculate_sum_cdf_axis100(df_gpu)\n",
|
235 |
+
"x2, y2 = calculate_sum_cdf_axis100(df_D[[\"Time\", \"Sys_Total_Power\"]])\n",
|
236 |
+
"\n",
|
237 |
+
"with open(f\"./server_power.pkl\", \"wb\") as file:\n",
|
238 |
+
" pickle.dump([x1, y1, x2, y2], file)"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "markdown",
|
243 |
+
"metadata": {},
|
244 |
+
"source": [
|
245 |
+
"### Processing Philly GPU Utilization Data"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 45,
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [],
|
253 |
+
"source": [
|
254 |
+
"philly = pd.read_csv(\n",
|
255 |
+
" \"./philly/philly_gpu_util.csv\", on_bad_lines=\"skip\", header=0\n",
|
256 |
+
") # Please refer to their official repo for the data\n",
|
257 |
+
"cols = list(philly.columns)\n",
|
258 |
+
"philly = philly.drop(columns=[cols[-1]])\n",
|
259 |
+
"philly.reset_index(inplace=True)\n",
|
260 |
+
"philly.columns = cols\n",
|
261 |
+
"philly.rename(columns={\"time\": \"Time\"}, inplace=True)\n",
|
262 |
+
"philly = philly.drop(columns=[cols[1]])\n",
|
263 |
+
"\n",
|
264 |
+
"x1, y1 = calculate_num_cdf_axis100(philly)\n",
|
265 |
+
"with open(f\"{SAVEPKL}/util_gpu_util_philly.pkl\", \"wb\") as file:\n",
|
266 |
+
" pickle.dump([x1, y1], file)"
|
267 |
+
]
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"metadata": {
|
271 |
+
"kernelspec": {
|
272 |
+
"display_name": "base",
|
273 |
+
"language": "python",
|
274 |
+
"name": "python3"
|
275 |
+
},
|
276 |
+
"language_info": {
|
277 |
+
"codemirror_mode": {
|
278 |
+
"name": "ipython",
|
279 |
+
"version": 3
|
280 |
+
},
|
281 |
+
"file_extension": ".py",
|
282 |
+
"mimetype": "text/x-python",
|
283 |
+
"name": "python",
|
284 |
+
"nbconvert_exporter": "python",
|
285 |
+
"pygments_lexer": "ipython3",
|
286 |
+
"version": "3.9.16"
|
287 |
+
},
|
288 |
+
"orig_nbformat": 4
|
289 |
+
},
|
290 |
+
"nbformat": 4,
|
291 |
+
"nbformat_minor": 2
|
292 |
+
}
|
data/job_trace/trace_kalos.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/job_trace/trace_previous_work/helios_trace.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4549ecb1f41ce2ffa3067c6693faaee653a4f8d6baf4e9d9c63a4bd7c5f70acc
|
3 |
+
size 362062044
|
data/job_trace/trace_previous_work/pai_trace.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8375ec88d711f51527c7dae77a2f78837c496e68a7809382a38536a6ccd74841
|
3 |
+
size 201182363
|
data/job_trace/trace_previous_work/philly_trace.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3753469cf1081c1bb02504153997ed2c74d537505d38d6fd16fb8028d7ab6dc6
|
3 |
+
size 15225565
|
data/job_trace/trace_previous_work/philly_trace_merge_retry.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0e4f9a902f0d96e8848afd1aede005b03d32deb6bb53f18628497947a53fba7
|
3 |
+
size 14014148
|
data/job_trace/trace_seren.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:747854c73ce8b3263b764aa9ff8d866d89903705d31fcd0e0520c33dd14af9a1
|
3 |
+
size 99262320
|
data/utils.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cluster_metric_header = [
|
2 |
+
"NODE_CPU_UTILIZATION",
|
3 |
+
"NODE_MEMORY_UTILIZATION",
|
4 |
+
"NODE_IB_SEND",
|
5 |
+
"NODE_IB_RECEIVE",
|
6 |
+
]
|
7 |
+
|
8 |
+
dcgm_metric_header = [
|
9 |
+
"XID_ERRORS",
|
10 |
+
"GPU_TEMP",
|
11 |
+
"MEMORY_TEMP",
|
12 |
+
"MEM_CLOCK",
|
13 |
+
"MEM_COPY_UTIL",
|
14 |
+
"FB_FREE",
|
15 |
+
"FB_USED",
|
16 |
+
"DRAM_ACTIVE",
|
17 |
+
"POWER_USAGE",
|
18 |
+
"GPU_UTIL",
|
19 |
+
"PIPE_TENSOR_ACTIVE",
|
20 |
+
"SM_ACTIVE",
|
21 |
+
"SM_OCCUPANCY",
|
22 |
+
]
|
23 |
+
|
24 |
+
dcgm_full = [
|
25 |
+
"DCGM_FI_DEV_CORRECTABLE_REMAPPED_ROWS", # 可纠正错误的重新映射行数 Number of remapped rows for correctable errors.
|
26 |
+
"DCGM_FI_DEV_DEC_UTIL", # GPU 解码器利用率(单位:%)
|
27 |
+
"DCGM_FI_DEV_ECC_DBE_AGG_TOTAL", # 双位聚合(持久)ECC 错误总数 (Total double bit aggregate (persistent) ECC errors) 注:单调递增。
|
28 |
+
"DCGM_FI_DEV_ECC_DBE_VOL_TOTAL", # 双位易失性 ECC 错误总数。(Total double bit volatile ECC errors)
|
29 |
+
"DCGM_FI_DEV_ECC_SBE_AGG_TOTAL", # 单位聚合(持久)ECC 错误总数 注:单调递增。
|
30 |
+
"DCGM_FI_DEV_ECC_SBE_VOL_TOTAL", # 单位易失性 ECC 错误总数。
|
31 |
+
"DCGM_FI_DEV_ENC_UTIL", # GPU 编码器利用率(单位:%)
|
32 |
+
"DCGM_FI_DEV_FB_FREE", # GPU 帧缓存剩余量(单位:MiB)
|
33 |
+
"DCGM_FI_DEV_FB_USED", # GPU 帧缓存使用量(单位:MiB) (该值与nvidia-smi命令中memory-usage的已使用值对应)
|
34 |
+
"DCGM_FI_DEV_GPU_TEMP", # GPU 当前温度(单位:℃)
|
35 |
+
"DCGM_FI_DEV_GPU_UTIL", # GPU 利用率(单位:%)
|
36 |
+
"DCGM_FI_DEV_MEMORY_TEMP", # 显存当前温度(单位:℃)
|
37 |
+
"DCGM_FI_DEV_MEM_CLOCK", # GPU 内存时钟(单位:MHZ)
|
38 |
+
"DCGM_FI_DEV_MEM_COPY_UTIL", # GPU 内存带宽利用率(单位:%)
|
39 |
+
"DCGM_FI_DEV_NVLINK_BANDWIDTH_TOTAL", # GPU 所有通道的 NVLink 带宽计数器总数
|
40 |
+
"DCGM_FI_DEV_PCIE_REPLAY_COUNTER", # GPU PCIE 重试次数
|
41 |
+
"DCGM_FI_DEV_POWER_USAGE", # GPU 当前使用功率(单位:W)
|
42 |
+
"DCGM_FI_DEV_ROW_REMAP_FAILURE", # Whether remapping of rows has failed
|
43 |
+
"DCGM_FI_DEV_SM_CLOCK", # GPU SM 时钟(单位:MHZ)
|
44 |
+
"DCGM_FI_DEV_TOTAL_ENERGY_CONSUMPTION", # GPU 启动以来的总能耗(单位:mJ)
|
45 |
+
"DCGM_FI_DEV_UNCORRECTABLE_REMAPPED_ROWS", # Number of remapped rows for uncorrectable errors.
|
46 |
+
"DCGM_FI_DEV_VGPU_LICENSE_STATUS", # vGPU 许可证状态
|
47 |
+
"DCGM_FI_DEV_XID_ERRORS", # XID errors
|
48 |
+
"DCGM_FI_PROF_DRAM_ACTIVE", # 内存接口主动发送或接收数据的周期比率 (The ratio of cycles the device memory interface is active sending or receiving data)
|
49 |
+
"DCGM_FI_PROF_GR_ENGINE_ACTIVE", # Profiling Fields. These all start with DCGM_FI_PROF_* Ratio of time the graphics engine is active. The graphics engine is active if a graphics/compute context is bound and the graphics pipe or compute pipe is busy.
|
50 |
+
"DCGM_FI_PROF_PCIE_RX_BYTES", # GPU PCIE 接收字节总数(单位:字节)
|
51 |
+
"DCGM_FI_PROF_PCIE_TX_BYTES", # GPU PCIE 发送字节总数(单位:字节)
|
52 |
+
"DCGM_FI_PROF_PIPE_TENSOR_ACTIVE", # The ratio of cycles the any tensor pipe is active (off the peak sustained elapsed cycles)
|
53 |
+
"DCGM_FI_PROF_SM_ACTIVE", # The ratio of cycles an SM has at least 1 warp assigned (computed from the number of cycles and elapsed cycles)
|
54 |
+
"DCGM_FI_PROF_SM_OCCUPANCY", # The ratio of number of warps resident on an SM.
|
55 |
+
]
|
56 |
+
|
57 |
+
table_dcgm_fatal_header = [
|
58 |
+
"DCGM_FI_DEV_XID_ERRORS",
|
59 |
+
"DCGM_FI_DEV_GPU_TEMP",
|
60 |
+
"DCGM_FI_DEV_MEMORY_TEMP",
|
61 |
+
"DCGM_FI_DEV_MEM_CLOCK",
|
62 |
+
"DCGM_FI_DEV_MEM_COPY_UTIL",
|
63 |
+
"DCGM_FI_DEV_FB_FREE",
|
64 |
+
"DCGM_FI_DEV_FB_USED",
|
65 |
+
"DCGM_FI_PROF_DRAM_ACTIVE",
|
66 |
+
"DCGM_FI_DEV_POWER_USAGE",
|
67 |
+
"DCGM_FI_DEV_GPU_UTIL",
|
68 |
+
"DCGM_FI_PROF_PIPE_TENSOR_ACTIVE",
|
69 |
+
"DCGM_FI_PROF_SM_ACTIVE",
|
70 |
+
"DCGM_FI_PROF_SM_OCCUPANCY",
|
71 |
+
"DCGM_FI_DEV_SM_CLOCK",
|
72 |
+
]
|
73 |
+
|
74 |
+
converted_dcgm_fatal_table_header = [
|
75 |
+
"XID_ERRORS",
|
76 |
+
"GPU_TEMP",
|
77 |
+
"MEMORY_TEMP",
|
78 |
+
"MEM_CLOCK",
|
79 |
+
"MEM_COPY_UTIL",
|
80 |
+
"FB_FREE",
|
81 |
+
"FB_USED",
|
82 |
+
"DRAM_ACTIVE",
|
83 |
+
"POWER_USAGE",
|
84 |
+
"GPU_UTIL",
|
85 |
+
"PIPE_TENSOR_ACTIVE",
|
86 |
+
"SM_ACTIVE",
|
87 |
+
"SM_OCCUPANCY",
|
88 |
+
"SM_CLOCK",
|
89 |
+
]
|
90 |
+
|
91 |
+
# node_infiniband_physical_state_id:
|
92 |
+
# (0: no change, 1: sleep, 2: polling, 3: disable, 4: shift, 5: link up, 6: link error recover, 7: phytest)
|
93 |
+
IB_PHYSICAL_STATE_MAP = {
|
94 |
+
"0": "no change",
|
95 |
+
"1": "sleep",
|
96 |
+
"2": "polling",
|
97 |
+
"3": "disable",
|
98 |
+
"4": "shift",
|
99 |
+
"5": "link up",
|
100 |
+
"6": "link error recover",
|
101 |
+
"7": "phytest",
|
102 |
+
}
|
103 |
+
|
104 |
+
|
105 |
+
# node_infiniband_state_id: (0: no change, 1: down, 2: init, 3: armed, 4: active, 5: act defer)
|
106 |
+
IB_STATE_MAP = {"0": "no change", "1": "down", "2": "init", "3": "armed", "4": "active", "5": "act defer"}
|
figure/bar_job_state.pdf
ADDED
Binary file (17.6 kB). View file
|
|
figure/box_gpu_num.pdf
ADDED
Binary file (21 kB). View file
|
|
figure/cdf_job_duration_queue.pdf
ADDED
Binary file (26.1 kB). View file
|
|
figure/cdf_job_duration_util.pdf
ADDED
Binary file (20.6 kB). View file
|
|
figure/cdf_job_gpunum.pdf
ADDED
Binary file (18.8 kB). View file
|
|
figure/cdf_job_jobtime.pdf
ADDED
Binary file (18.4 kB). View file
|
|
figure/cdf_power.pdf
ADDED
Binary file (23.9 kB). View file
|
|
figure/cdf_resource_util.pdf
ADDED
Binary file (31.3 kB). View file
|
|
figure/cdf_temperature.pdf
ADDED
Binary file (18 kB). View file
|
|
figure/treemap_job_dist.pdf
ADDED
Binary file (24.5 kB). View file
|
|