import os import datasets from datasets import Features, Value from huggingface_hub import snapshot_download import glob import yaml class PathoBenchConfig(datasets.BuilderConfig): def __init__(self, **kwargs): # Extract task_in_dataset and dataset_to_download from kwargs self.task_in_dataset = kwargs.pop("task_in_dataset", None) self.dataset_to_download = kwargs.pop("dataset_to_download", None) self.force_download = kwargs.pop("force_download", True) # Set default values for task_in_dataset and dataset_to_download if self.dataset_to_download is None and self.task_in_dataset is None: # If neither are provided, default both to '*' self.dataset_to_download = '*' self.task_in_dataset = '*' elif self.dataset_to_download is None and self.task_in_dataset is not None: # If task_in_dataset is provided but dataset_to_download is not, raise an error raise AssertionError("Dataset needs to be defined for the task_in_dataset provided.") elif self.dataset_to_download is not None and self.task_in_dataset is None: # If dataset_to_download is provided but task_in_dataset is not, default task_in_dataset to '*' self.task_in_dataset = '*' super().__init__(**kwargs) class PathoBenchDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ PathoBenchConfig(name="custom_config", version="1.0.0", description="PathoBench config") ] BUILDER_CONFIG_CLASS = PathoBenchConfig def _info(self): return datasets.DatasetInfo( description="PathoBench: collection of canonical computational pathology tasks", homepage="https://github.com/mahmoodlab/patho-bench", license="CC BY-NC-SA 4.0 Deed", features=Features({ 'path': Value('string') }) ) def _split_generators(self, dl_manager): repo_id = self.repo_id dataset_to_download = self.config.dataset_to_download local_dir = self._cache_dir_root force_download = self.config.force_download task_in_dataset = self.config.task_in_dataset # Ensure the base local directory exists os.makedirs(local_dir, exist_ok=True) # download available_splits.yaml if not yet downloaded snapshot_download( repo_id=repo_id, allow_patterns=["available_splits.yaml"], repo_type="dataset", local_dir=local_dir, force_download=force_download, ) # open yaml and get a list of datasets implemented with open(os.path.join(local_dir, "available_splits.yaml"), 'r') as file: available_splits = yaml.safe_load(file) # ensure dataset_to_download is in implemented_datasets if dataset_to_download != "*": assert dataset_to_download in available_splits, f"{dataset_to_download} was not found. Available splits: ({available_splits})" if task_in_dataset != "*": assert task_in_dataset in available_splits[dataset_to_download], f"{task_in_dataset} was not found in {dataset_to_download}. Available tasks: ({available_splits[dataset_to_download]})" # Determine parent folder based on dataset naming os.makedirs(local_dir, exist_ok=True) # Determine the download pattern if dataset_to_download == "*": allow_patterns = [f"*/*"] else: task_path = "*" if task_in_dataset == '*' else f"{task_in_dataset}/*" allow_patterns = [f"{dataset_to_download}/{task_path}"] # Download the required datasets snapshot_download( repo_id=repo_id, allow_patterns=allow_patterns, repo_type="dataset", local_dir=local_dir, force_download=force_download, ) # Locate all .tsv files search_pattern = os.path.join(local_dir, '**', '*.tsv') all_tsv_splits = glob.glob(search_pattern, recursive=True) return [ datasets.SplitGenerator( name="full", gen_kwargs={"filepath": all_tsv_splits}, ) ] def _generate_examples(self, filepath): idx = 0 for file in filepath: yield idx, { 'path': file } idx += 1