import json import pickle from pathlib import Path from spacy.tokens import Span import dacy from dacy.datasets import dane def load_examples(): save_path = Path("examples.pkl") if save_path.exists(): with open(save_path, "rb") as f: examples = pickle.load(f) return examples train, dev, test = dane() nlp = dacy.load("da_dacy_large_ner_fine_grained-0.1.0") examples = list(test(nlp)) + list(train(nlp)) + list(dev(nlp)) docs = nlp.pipe([ex.x.text for ex in examples]) for e in examples: e.predicted = next(docs) with open("examples.pkl", "wb") as f: pickle.dump(examples, f) return examples def normalize_examples(examples): label_mapping = { "PER": "PERSON", "LOC": "LOCATION", "ORG": "ORGANIZATION", "MISC": "MISC", } for e in examples: old_ents = e.y.ents new_ents = [] for ent in old_ents: new_label = label_mapping[ent.label_] new_ent = Span(e.y, start=ent.start, end=ent.end, label=new_label) new_ents.append(new_ent) e.y.ents = new_ents return examples def example_to_review_format(example) -> dict: ref = example.y text = ref.text tokens = [ {"text": t.text, "start": t.idx, "end": t.idx + len(t), "id": i} for i, t in enumerate(ref) ] answer = "accept" versions = [] v_ref_spans = [ { "start": s.start_char, "end": s.end_char, "label": s.label_, "token_start": s.start, "token_end": s.end - 1, } for s in ref.ents ] v_ref = { "text": text, "tokens": tokens, "spans": v_ref_spans, "answer": answer, "sessions": ["reference"], "default": True, } versions.append(v_ref) v_pred_spans = [ { "start": s.start_char, "end": s.end_char, "label": s.label_, "token_start": s.start, "token_end": s.end - 1, } for s in example.predicted.ents ] v_pred = { "text": text, "tokens": tokens, "spans": v_pred_spans, "answer": answer, "sessions": ["da_dacy_large_ner_fine_grained-0.1.0"], "default": True, } versions.append(v_pred) return { "text": text, "tokens": tokens, "answer": answer, "view_id": "ner_manual", "versions": versions, } if __name__ == "__main__": examples = load_examples() ",".join(set([ent.label_ for e in examples for ent in e.x.ents])) jsonl_data = [example_to_review_format(e) for e in normalize_examples(examples)] with open("examples.jsonl", "w") as f: for json_dict in jsonl_data: line = json.dumps(json_dict) f.write(f"{line}\n") with open("reference.jsonl", "w") as f: for json_dict in jsonl_data: line = json.dumps(json_dict["versions"][0]) f.write(f"{line}\n") with open("predictions.jsonl", "w") as f: for json_dict in jsonl_data: line = json.dumps(json_dict["versions"][1]) f.write(f"{line}\n")