--- dataset_info: features: - name: idx dtype: int64 - name: video_path dtype: string - name: question dtype: string - name: choices struct: - name: a dtype: string - name: b dtype: string - name: c dtype: string - name: d dtype: string - name: answer sequence: string - name: choice_type dtype: string - name: video_source dtype: string - name: video_type dtype: string - name: frame_number dtype: int64 - name: video_time dtype: float64 - name: fps dtype: float64 - name: box sequence: sequence: int64 - name: mask list: - name: counts dtype: string - name: size sequence: int64 - name: point sequence: sequence: int64 splits: - name: test num_bytes: 4578328 num_examples: 3277 download_size: 2933575 dataset_size: 4578328 configs: - config_name: default data_files: - split: test path: data/test-* --- # EOC-Bench : Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?
[![arXiv preprint](https://img.shields.io/badge/arxiv-2506.05287-ECA8A7?logo=arxiv)](https://arxiv.org/abs/2506.05287) [![GitHub](https://img.shields.io/badge/%20Git%20Hub-Code-yellow)](https://github.com/alibaba-damo-academy/EOCBench/) [![Project Page](https://img.shields.io/badge/🌐%20Project-Page-9DC3E6)](https://circleradon.github.io/EOCBench/) [![Learderboard](https://img.shields.io/badge/🏆%20Leaderboard-Page-96D03A)](https://circleradon.github.io/EOCBench/#leaderboard) ## 🔍 Overview we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation.

## 📚 Tasks Definition EOC-Bench structures questions into three temporally grounded categories: **Past, Present, and Future**, with a total of **11** categories. ![data.png](https://cdn-uploads.huggingface.co/production/uploads/64a3fe3dde901eb01df12398/wDwXgMA6UNyvtdWhqqzq9.png) ### 📈 Evaluation Please see our [GitHub](https://github.com/alibaba-damo-academy/EOCBench/).