Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
License:
Calad commited on
Commit
1d779f2
Β·
verified Β·
1 Parent(s): 0f0fa60

add dataset card

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ # Dataset Card
6
+
7
+
8
+ ## Dataset Details
9
+
10
+ This dataset is primarily created for the work [Fast muon tracking with machine learning implemented in FPGA](http://dx.doi.org/10.1016/j.nima.2022.167546) ([Arxiv link](https://arxiv.org/abs/2202.04976)) that contains ~3M simulated muon events with Geant4.
11
+ Hits in the muon chamber and ground truth of track angle are saved.
12
+
13
+ ### Dataset Description
14
+
15
+ Please refer to the Section Simulation samples in the referenced work for details.
16
+
17
+ The file contains 3 keys: 'X', 'Y', and 'corr'.
18
+
19
+ 'X' is a boolean array of size (3072000, 7, 50) used as the input information.
20
+
21
+ 'Y' is a float vector of size (3072000) that contains the ground truth angle to be predicted.
22
+
23
+ 'corr' contains three keys each of size (100, 100) that contains the Pearson correlation factor between the named stations that can be derived from X. Not useful for general purpose.
24
+
25
+ ## Uses
26
+
27
+ ```python
28
+ import h5py as h5
29
+ with open('dataset.h5','r') as f:
30
+ X = np.array(f['X'])
31
+ Y = np.array(f['Y'])
32
+ ```
33
+
34
+ ## Dataset Structure
35
+
36
+ ```
37
+ <ROOT>
38
+ β”œβ”€β”€ X: bool[3072000, 7, 50]
39
+ β”‚
40
+ β”œβ”€β”€ Y: float64[3072000]
41
+ β”‚
42
+ └── corr
43
+ β”œβ”€β”€ 12: float64[100, 100]
44
+ β”‚
45
+ β”œβ”€β”€ 23: float64[100, 100]
46
+ β”‚
47
+ └── 13: float64[100, 100]
48
+ ```
49
+
50
+
51
+ ## Citation [optional]
52
+
53
+ You can cite the original work that introduces this dataset.
54
+
55
+ **BibTeX:**
56
+
57
+ ```
58
+ @article{Sun_2023,
59
+ title={Fast muon tracking with machine learning implemented in FPGA},
60
+ volume={1045},
61
+ ISSN={0168-9002},
62
+ url={http://dx.doi.org/10.1016/j.nima.2022.167546},
63
+ DOI={10.1016/j.nima.2022.167546},
64
+ journal={Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment},
65
+ publisher={Elsevier BV},
66
+ author={Sun, Chang and Nakajima, Takumi and Mitsumori, Yuki and Horii, Yasuyuki and Tomoto, Makoto},
67
+ year={2023},
68
+ month=jan, pages={167546}
69
+ }
70
+ ```
71
+