--- dataset_info: features: - name: id dtype: string - name: title dtype: string - name: description dtype: string - name: cpes list: string - name: cvss_v4_0 dtype: float64 - name: cvss_v3_1 dtype: float64 - name: cvss_v3_0 dtype: float64 - name: cvss_v2_0 dtype: float64 splits: - name: train num_bytes: 364407183.04846585 num_examples: 562497 - name: test num_bytes: 40489902.95153417 num_examples: 62500 download_size: 159615679 dataset_size: 404897086.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - text-classification license: cc-by-4.0 library_name: datasets tags: - vulnerability - cybersecurity - security - cve - cvss --- This dataset, `CIRCL/vulnerability-scores`, comprises over 600,000 real-world vulnerabilities used to train and evaluate VLAI, a transformer-based model designed to predict software vulnerability severity levels directly from text descriptions, enabling faster and more consistent triage. The dataset is presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607). Project page: [https://vulnerability.circl.lu](https://vulnerability.circl.lu) Associated code: [https://github.com/vulnerability-lookup/ML-Gateway](https://github.com/vulnerability-lookup/ML-Gateway) ### Sources of the data - CVE Program (enriched with data from vulnrichment and Fraunhofer FKIE) - GitHub Security Advisories - PySec advisories - CSAF Red Hat - CSAF Cisco - CSAF CISA Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu). Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/). ### Query with datasets ```python import json from datasets import load_dataset dataset = load_dataset("CIRCL/vulnerability-scores") vulnerabilities = ["CVE-2012-2339", "RHSA-2023:5964", "GHSA-7chm-34j8-4f22", "PYSEC-2024-225"] filtered_entries = dataset.filter(lambda elem: elem["id"] in vulnerabilities) for entry in filtered_entries["train"]: print(json.dumps(entry, indent=4)) ```