--- annotations_creators: - no-annotation language: - en language_creators: - found license: mit multilinguality: - monolingual pretty_name: Medium Articles Dataset size_categories: - n>1K source_datasets: - original tags: - medium - articles - blog-posts task_categories: - text-classification - text-generation task_ids: - topic-classification - language-modeling configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: audioVersionDurationSec dtype: float64 - name: codeBlock dtype: string - name: codeBlockCount dtype: float64 - name: collectionId dtype: string - name: createdDate dtype: string - name: createdDatetime dtype: string - name: firstPublishedDate dtype: string - name: firstPublishedDatetime dtype: string - name: imageCount dtype: float64 - name: isSubscriptionLocked dtype: bool - name: language dtype: string - name: latestPublishedDate dtype: string - name: latestPublishedDatetime dtype: string - name: linksCount dtype: float64 - name: postId dtype: string - name: readingTime dtype: float64 - name: recommends dtype: float64 - name: responsesCreatedCount dtype: float64 - name: socialRecommendsCount dtype: float64 - name: subTitle dtype: string - name: tagsCount dtype: float64 - name: text dtype: string - name: title dtype: string - name: totalClapCount dtype: float64 - name: uniqueSlug dtype: string - name: updatedDate dtype: string - name: updatedDatetime dtype: string - name: url dtype: string - name: vote dtype: bool - name: wordCount dtype: float64 - name: publicationdescription dtype: string - name: publicationdomain dtype: string - name: publicationfacebookPageName dtype: string - name: publicationfollowerCount dtype: float64 - name: publicationname dtype: string - name: publicationpublicEmail dtype: string - name: publicationslug dtype: string - name: publicationtags dtype: string - name: publicationtwitterUsername dtype: string - name: tag_name dtype: string - name: slug dtype: string - name: name dtype: string - name: postCount dtype: float64 - name: author dtype: string - name: bio dtype: string - name: userId dtype: string - name: userName dtype: string - name: usersFollowedByCount dtype: float64 - name: usersFollowedCount dtype: float64 - name: scrappedDate dtype: float64 - name: claps dtype: string - name: reading_time dtype: float64 - name: link dtype: string - name: authors dtype: string - name: timestamp dtype: string - name: tags dtype: string splits: - name: train num_bytes: 2654611084 num_examples: 444593 download_size: 1482558340 dataset_size: 2654611084 --- # Medium Articles Dataset Generator This project combines multiple datasets from Kaggle and Hugging Face to create a comprehensive collection of Medium articles. The combined dataset is available on [Hugging Face Hub](https://huggingface.co/datasets/Alaamer/medium-articles-posts-with-content). ## Dataset Description This dataset is a unique compilation that not only combines multiple sources but also ensures data quality through normalization and deduplication. A key feature is that all entries in the `text` column are unique - there are no duplicate articles in the final dataset. ### Data Sources: #### Kaggle Sources: - aiswaryaramachandran/medium-articles-with-content - hsankesara/medium-articles - meruvulikith/1300-towards-datascience-medium-articles-dataset #### Hugging Face Sources: - fabiochiu/medium-articles - Falah/medium_articles_posts ## Features - Combines multiple data sources into a single, unified dataset - **Ensures uniqueness**: Each article appears only once in the dataset - **Quality control**: - Removes duplicate entries based on article text - Handles missing values - Normalizes data format - Saves the final dataset in efficient Parquet format - Publishes the dataset to Hugging Face Hub ## Requirements ```bash pip install datasets pip install kagglehub huggingface_hub tqdm ``` ## Usage 1. Set up your Hugging Face authentication token 2. Run the script: ```bash python combined_medium_ds_generator.py ``` ## Data Processing Steps 1. Downloads datasets from Kaggle and Hugging Face 2. Normalizes each dataset by: - Removing null values - Eliminating duplicates - Standardizing column names 3. Combines all datasets into a single DataFrame 4. Saves the result as a Parquet file 5. Uploads the final dataset to Hugging Face Hub ## Contributing Contributions are welcome! Please feel free to submit a Pull Request. ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Author - [@Alaamer](https://huggingface.co/Alaamer) ## Acknowledgments Special thanks to the original dataset creators: - aiswaryaramachandran - hsankesara - meruvulikith - fabiochiu - Falah