End of training
Browse files- README.md +13 -13
- all_results.json +18 -0
- eval_results.json +12 -0
- train_results.json +9 -0
- trainer_state.json +496 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ base_model: bert-base-uncased
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- datasaur-
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +18,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: datasaur-
|
22 |
-
type: datasaur-
|
23 |
config: default
|
24 |
split: validation
|
25 |
args: default
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,13 +43,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# autotrain-radesky-lab-span-v1
|
45 |
|
46 |
-
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the datasaur-
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
+
- datasaur-dev/datasaur-MTFiZjUwM2Q-ZWJiZDRmNGI
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
+
name: datasaur-dev/datasaur-MTFiZjUwM2Q-ZWJiZDRmNGI
|
22 |
+
type: datasaur-dev/datasaur-MTFiZjUwM2Q-ZWJiZDRmNGI
|
23 |
config: default
|
24 |
split: validation
|
25 |
args: default
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.7853658536585366
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.8385416666666666
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.8110831234256927
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9709519365375642
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
# autotrain-radesky-lab-span-v1
|
45 |
|
46 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the datasaur-dev/datasaur-MTFiZjUwM2Q-ZWJiZDRmNGI dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2518
|
49 |
+
- Precision: 0.7854
|
50 |
+
- Recall: 0.8385
|
51 |
+
- F1: 0.8111
|
52 |
+
- Accuracy: 0.9710
|
53 |
|
54 |
## Model description
|
55 |
|
all_results.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 25.0,
|
3 |
+
"eval_accuracy": 0.9709519365375642,
|
4 |
+
"eval_f1": 0.8110831234256927,
|
5 |
+
"eval_loss": 0.2518477439880371,
|
6 |
+
"eval_precision": 0.7853658536585366,
|
7 |
+
"eval_recall": 0.8385416666666666,
|
8 |
+
"eval_runtime": 3.2853,
|
9 |
+
"eval_samples": 909,
|
10 |
+
"eval_samples_per_second": 276.687,
|
11 |
+
"eval_steps_per_second": 34.7,
|
12 |
+
"total_flos": 2472027466589526.0,
|
13 |
+
"train_loss": 0.03293397539264553,
|
14 |
+
"train_runtime": 1492.2693,
|
15 |
+
"train_samples": 3635,
|
16 |
+
"train_samples_per_second": 60.897,
|
17 |
+
"train_steps_per_second": 7.623
|
18 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 25.0,
|
3 |
+
"eval_accuracy": 0.9709519365375642,
|
4 |
+
"eval_f1": 0.8110831234256927,
|
5 |
+
"eval_loss": 0.2518477439880371,
|
6 |
+
"eval_precision": 0.7853658536585366,
|
7 |
+
"eval_recall": 0.8385416666666666,
|
8 |
+
"eval_runtime": 3.2853,
|
9 |
+
"eval_samples": 909,
|
10 |
+
"eval_samples_per_second": 276.687,
|
11 |
+
"eval_steps_per_second": 34.7
|
12 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 25.0,
|
3 |
+
"total_flos": 2472027466589526.0,
|
4 |
+
"train_loss": 0.03293397539264553,
|
5 |
+
"train_runtime": 1492.2693,
|
6 |
+
"train_samples": 3635,
|
7 |
+
"train_samples_per_second": 60.897,
|
8 |
+
"train_steps_per_second": 7.623
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8110831234256927,
|
3 |
+
"best_model_checkpoint": "checkpoint-v1/checkpoint-10465",
|
4 |
+
"epoch": 25.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 11375,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.9440037330844611,
|
14 |
+
"eval_f1": 0.48913043478260865,
|
15 |
+
"eval_loss": 0.25645163655281067,
|
16 |
+
"eval_precision": 0.5113636363636364,
|
17 |
+
"eval_recall": 0.46875,
|
18 |
+
"eval_runtime": 3.4617,
|
19 |
+
"eval_samples_per_second": 262.585,
|
20 |
+
"eval_steps_per_second": 32.931,
|
21 |
+
"step": 455
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 1.098901098901099,
|
25 |
+
"grad_norm": 3.66561222076416,
|
26 |
+
"learning_rate": 9.560439560439561e-05,
|
27 |
+
"loss": 0.2875,
|
28 |
+
"step": 500
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.0,
|
32 |
+
"eval_accuracy": 0.9238217452169856,
|
33 |
+
"eval_f1": 0.29100529100529104,
|
34 |
+
"eval_loss": 0.3291769027709961,
|
35 |
+
"eval_precision": 0.2956989247311828,
|
36 |
+
"eval_recall": 0.2864583333333333,
|
37 |
+
"eval_runtime": 3.3496,
|
38 |
+
"eval_samples_per_second": 271.38,
|
39 |
+
"eval_steps_per_second": 34.034,
|
40 |
+
"step": 910
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 2.197802197802198,
|
44 |
+
"grad_norm": 4.647622585296631,
|
45 |
+
"learning_rate": 9.12087912087912e-05,
|
46 |
+
"loss": 0.1173,
|
47 |
+
"step": 1000
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 3.0,
|
51 |
+
"eval_accuracy": 0.9531031264582361,
|
52 |
+
"eval_f1": 0.5489443378119002,
|
53 |
+
"eval_loss": 0.19305621087551117,
|
54 |
+
"eval_precision": 0.43465045592705165,
|
55 |
+
"eval_recall": 0.7447916666666666,
|
56 |
+
"eval_runtime": 3.3449,
|
57 |
+
"eval_samples_per_second": 271.756,
|
58 |
+
"eval_steps_per_second": 34.082,
|
59 |
+
"step": 1365
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.2967032967032965,
|
63 |
+
"grad_norm": 0.18239367008209229,
|
64 |
+
"learning_rate": 8.681318681318682e-05,
|
65 |
+
"loss": 0.0945,
|
66 |
+
"step": 1500
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 4.0,
|
70 |
+
"eval_accuracy": 0.957769482034531,
|
71 |
+
"eval_f1": 0.603448275862069,
|
72 |
+
"eval_loss": 0.1780281662940979,
|
73 |
+
"eval_precision": 0.5147058823529411,
|
74 |
+
"eval_recall": 0.7291666666666666,
|
75 |
+
"eval_runtime": 3.3629,
|
76 |
+
"eval_samples_per_second": 270.306,
|
77 |
+
"eval_steps_per_second": 33.9,
|
78 |
+
"step": 1820
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 4.395604395604396,
|
82 |
+
"grad_norm": 0.10920047760009766,
|
83 |
+
"learning_rate": 8.241758241758242e-05,
|
84 |
+
"loss": 0.0559,
|
85 |
+
"step": 2000
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 5.0,
|
89 |
+
"eval_accuracy": 0.9591693887074195,
|
90 |
+
"eval_f1": 0.6343612334801763,
|
91 |
+
"eval_loss": 0.19242332875728607,
|
92 |
+
"eval_precision": 0.549618320610687,
|
93 |
+
"eval_recall": 0.75,
|
94 |
+
"eval_runtime": 3.3708,
|
95 |
+
"eval_samples_per_second": 269.67,
|
96 |
+
"eval_steps_per_second": 33.82,
|
97 |
+
"step": 2275
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 5.4945054945054945,
|
101 |
+
"grad_norm": 0.08735374361276627,
|
102 |
+
"learning_rate": 7.802197802197802e-05,
|
103 |
+
"loss": 0.0412,
|
104 |
+
"step": 2500
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 6.0,
|
108 |
+
"eval_accuracy": 0.9653523098460103,
|
109 |
+
"eval_f1": 0.7132530120481928,
|
110 |
+
"eval_loss": 0.16734345257282257,
|
111 |
+
"eval_precision": 0.6636771300448431,
|
112 |
+
"eval_recall": 0.7708333333333334,
|
113 |
+
"eval_runtime": 3.3682,
|
114 |
+
"eval_samples_per_second": 269.875,
|
115 |
+
"eval_steps_per_second": 33.846,
|
116 |
+
"step": 2730
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 6.593406593406593,
|
120 |
+
"grad_norm": 15.276603698730469,
|
121 |
+
"learning_rate": 7.362637362637363e-05,
|
122 |
+
"loss": 0.0309,
|
123 |
+
"step": 3000
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 7.0,
|
127 |
+
"eval_accuracy": 0.9634857676154923,
|
128 |
+
"eval_f1": 0.6906474820143884,
|
129 |
+
"eval_loss": 0.1927553117275238,
|
130 |
+
"eval_precision": 0.64,
|
131 |
+
"eval_recall": 0.75,
|
132 |
+
"eval_runtime": 3.3642,
|
133 |
+
"eval_samples_per_second": 270.199,
|
134 |
+
"eval_steps_per_second": 33.886,
|
135 |
+
"step": 3185
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 7.6923076923076925,
|
139 |
+
"grad_norm": 0.018443187698721886,
|
140 |
+
"learning_rate": 6.923076923076924e-05,
|
141 |
+
"loss": 0.0231,
|
142 |
+
"step": 3500
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 8.0,
|
146 |
+
"eval_accuracy": 0.9643023798413439,
|
147 |
+
"eval_f1": 0.6888361045130641,
|
148 |
+
"eval_loss": 0.1938297301530838,
|
149 |
+
"eval_precision": 0.6331877729257642,
|
150 |
+
"eval_recall": 0.7552083333333334,
|
151 |
+
"eval_runtime": 3.3614,
|
152 |
+
"eval_samples_per_second": 270.421,
|
153 |
+
"eval_steps_per_second": 33.914,
|
154 |
+
"step": 3640
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 8.791208791208792,
|
158 |
+
"grad_norm": 0.002568595577031374,
|
159 |
+
"learning_rate": 6.483516483516484e-05,
|
160 |
+
"loss": 0.0191,
|
161 |
+
"step": 4000
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 9.0,
|
165 |
+
"eval_accuracy": 0.9669855342977135,
|
166 |
+
"eval_f1": 0.7194244604316546,
|
167 |
+
"eval_loss": 0.18560947477817535,
|
168 |
+
"eval_precision": 0.6666666666666666,
|
169 |
+
"eval_recall": 0.78125,
|
170 |
+
"eval_runtime": 3.3745,
|
171 |
+
"eval_samples_per_second": 269.37,
|
172 |
+
"eval_steps_per_second": 33.782,
|
173 |
+
"step": 4095
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 9.89010989010989,
|
177 |
+
"grad_norm": 0.022610006853938103,
|
178 |
+
"learning_rate": 6.043956043956044e-05,
|
179 |
+
"loss": 0.018,
|
180 |
+
"step": 4500
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 10.0,
|
184 |
+
"eval_accuracy": 0.9659356042930471,
|
185 |
+
"eval_f1": 0.7289719626168225,
|
186 |
+
"eval_loss": 0.20415335893630981,
|
187 |
+
"eval_precision": 0.6610169491525424,
|
188 |
+
"eval_recall": 0.8125,
|
189 |
+
"eval_runtime": 3.3613,
|
190 |
+
"eval_samples_per_second": 270.431,
|
191 |
+
"eval_steps_per_second": 33.915,
|
192 |
+
"step": 4550
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 10.989010989010989,
|
196 |
+
"grad_norm": 1.0466951131820679,
|
197 |
+
"learning_rate": 5.604395604395605e-05,
|
198 |
+
"loss": 0.0138,
|
199 |
+
"step": 5000
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 11.0,
|
203 |
+
"eval_accuracy": 0.9648856742883808,
|
204 |
+
"eval_f1": 0.7002288329519452,
|
205 |
+
"eval_loss": 0.22543059289455414,
|
206 |
+
"eval_precision": 0.6244897959183674,
|
207 |
+
"eval_recall": 0.796875,
|
208 |
+
"eval_runtime": 3.3542,
|
209 |
+
"eval_samples_per_second": 271.007,
|
210 |
+
"eval_steps_per_second": 33.988,
|
211 |
+
"step": 5005
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 12.0,
|
215 |
+
"eval_accuracy": 0.969318712085861,
|
216 |
+
"eval_f1": 0.7815533980582524,
|
217 |
+
"eval_loss": 0.2193489372730255,
|
218 |
+
"eval_precision": 0.7318181818181818,
|
219 |
+
"eval_recall": 0.8385416666666666,
|
220 |
+
"eval_runtime": 3.3347,
|
221 |
+
"eval_samples_per_second": 272.592,
|
222 |
+
"eval_steps_per_second": 34.186,
|
223 |
+
"step": 5460
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 12.087912087912088,
|
227 |
+
"grad_norm": 0.005279447417706251,
|
228 |
+
"learning_rate": 5.164835164835166e-05,
|
229 |
+
"loss": 0.0104,
|
230 |
+
"step": 5500
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 13.0,
|
234 |
+
"eval_accuracy": 0.9643023798413439,
|
235 |
+
"eval_f1": 0.7242990654205607,
|
236 |
+
"eval_loss": 0.2286960929632187,
|
237 |
+
"eval_precision": 0.6567796610169492,
|
238 |
+
"eval_recall": 0.8072916666666666,
|
239 |
+
"eval_runtime": 3.3478,
|
240 |
+
"eval_samples_per_second": 271.521,
|
241 |
+
"eval_steps_per_second": 34.052,
|
242 |
+
"step": 5915
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 13.186813186813186,
|
246 |
+
"grad_norm": 0.02039416879415512,
|
247 |
+
"learning_rate": 4.7252747252747257e-05,
|
248 |
+
"loss": 0.0088,
|
249 |
+
"step": 6000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 14.0,
|
253 |
+
"eval_accuracy": 0.9682687820811946,
|
254 |
+
"eval_f1": 0.7553444180522564,
|
255 |
+
"eval_loss": 0.2258196324110031,
|
256 |
+
"eval_precision": 0.6943231441048034,
|
257 |
+
"eval_recall": 0.828125,
|
258 |
+
"eval_runtime": 3.3427,
|
259 |
+
"eval_samples_per_second": 271.935,
|
260 |
+
"eval_steps_per_second": 34.104,
|
261 |
+
"step": 6370
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 14.285714285714286,
|
265 |
+
"grad_norm": 0.00889052078127861,
|
266 |
+
"learning_rate": 4.2857142857142856e-05,
|
267 |
+
"loss": 0.0052,
|
268 |
+
"step": 6500
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 15.0,
|
272 |
+
"eval_accuracy": 0.9676854876341577,
|
273 |
+
"eval_f1": 0.7746835443037974,
|
274 |
+
"eval_loss": 0.23228472471237183,
|
275 |
+
"eval_precision": 0.7536945812807881,
|
276 |
+
"eval_recall": 0.796875,
|
277 |
+
"eval_runtime": 3.348,
|
278 |
+
"eval_samples_per_second": 271.503,
|
279 |
+
"eval_steps_per_second": 34.05,
|
280 |
+
"step": 6825
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 15.384615384615385,
|
284 |
+
"grad_norm": 0.0009669111459515989,
|
285 |
+
"learning_rate": 3.846153846153846e-05,
|
286 |
+
"loss": 0.0091,
|
287 |
+
"step": 7000
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 16.0,
|
291 |
+
"eval_accuracy": 0.9678021465235651,
|
292 |
+
"eval_f1": 0.762589928057554,
|
293 |
+
"eval_loss": 0.22262629866600037,
|
294 |
+
"eval_precision": 0.7066666666666667,
|
295 |
+
"eval_recall": 0.828125,
|
296 |
+
"eval_runtime": 3.3638,
|
297 |
+
"eval_samples_per_second": 270.226,
|
298 |
+
"eval_steps_per_second": 33.89,
|
299 |
+
"step": 7280
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 16.483516483516482,
|
303 |
+
"grad_norm": 0.0009670483996160328,
|
304 |
+
"learning_rate": 3.406593406593407e-05,
|
305 |
+
"loss": 0.0039,
|
306 |
+
"step": 7500
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 17.0,
|
310 |
+
"eval_accuracy": 0.9695520298646757,
|
311 |
+
"eval_f1": 0.7741935483870966,
|
312 |
+
"eval_loss": 0.2151697427034378,
|
313 |
+
"eval_precision": 0.7393364928909952,
|
314 |
+
"eval_recall": 0.8125,
|
315 |
+
"eval_runtime": 3.3394,
|
316 |
+
"eval_samples_per_second": 272.206,
|
317 |
+
"eval_steps_per_second": 34.138,
|
318 |
+
"step": 7735
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 17.582417582417584,
|
322 |
+
"grad_norm": 0.0011728066019713879,
|
323 |
+
"learning_rate": 2.9670329670329673e-05,
|
324 |
+
"loss": 0.006,
|
325 |
+
"step": 8000
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 18.0,
|
329 |
+
"eval_accuracy": 0.9672188520765282,
|
330 |
+
"eval_f1": 0.7544303797468355,
|
331 |
+
"eval_loss": 0.26869261264801025,
|
332 |
+
"eval_precision": 0.7339901477832512,
|
333 |
+
"eval_recall": 0.7760416666666666,
|
334 |
+
"eval_runtime": 3.3437,
|
335 |
+
"eval_samples_per_second": 271.857,
|
336 |
+
"eval_steps_per_second": 34.094,
|
337 |
+
"step": 8190
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 18.681318681318682,
|
341 |
+
"grad_norm": 0.0027556538116186857,
|
342 |
+
"learning_rate": 2.5274725274725276e-05,
|
343 |
+
"loss": 0.0024,
|
344 |
+
"step": 8500
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 19.0,
|
348 |
+
"eval_accuracy": 0.9689687354176388,
|
349 |
+
"eval_f1": 0.7722772277227722,
|
350 |
+
"eval_loss": 0.2464381903409958,
|
351 |
+
"eval_precision": 0.7358490566037735,
|
352 |
+
"eval_recall": 0.8125,
|
353 |
+
"eval_runtime": 3.3427,
|
354 |
+
"eval_samples_per_second": 271.937,
|
355 |
+
"eval_steps_per_second": 34.104,
|
356 |
+
"step": 8645
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 19.78021978021978,
|
360 |
+
"grad_norm": 0.000459605420473963,
|
361 |
+
"learning_rate": 2.0879120879120882e-05,
|
362 |
+
"loss": 0.0004,
|
363 |
+
"step": 9000
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 20.0,
|
367 |
+
"eval_accuracy": 0.9694353709752683,
|
368 |
+
"eval_f1": 0.794044665012407,
|
369 |
+
"eval_loss": 0.2462543547153473,
|
370 |
+
"eval_precision": 0.7582938388625592,
|
371 |
+
"eval_recall": 0.8333333333333334,
|
372 |
+
"eval_runtime": 3.3329,
|
373 |
+
"eval_samples_per_second": 272.736,
|
374 |
+
"eval_steps_per_second": 34.205,
|
375 |
+
"step": 9100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 20.87912087912088,
|
379 |
+
"grad_norm": 0.0002796004991978407,
|
380 |
+
"learning_rate": 1.6483516483516486e-05,
|
381 |
+
"loss": 0.0003,
|
382 |
+
"step": 9500
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 21.0,
|
386 |
+
"eval_accuracy": 0.9700186654223052,
|
387 |
+
"eval_f1": 0.806045340050378,
|
388 |
+
"eval_loss": 0.24657504260540009,
|
389 |
+
"eval_precision": 0.7804878048780488,
|
390 |
+
"eval_recall": 0.8333333333333334,
|
391 |
+
"eval_runtime": 3.3393,
|
392 |
+
"eval_samples_per_second": 272.21,
|
393 |
+
"eval_steps_per_second": 34.139,
|
394 |
+
"step": 9555
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 21.978021978021978,
|
398 |
+
"grad_norm": 0.0019895117729902267,
|
399 |
+
"learning_rate": 1.2087912087912089e-05,
|
400 |
+
"loss": 0.001,
|
401 |
+
"step": 10000
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 22.0,
|
405 |
+
"eval_accuracy": 0.9706019598693421,
|
406 |
+
"eval_f1": 0.8020304568527918,
|
407 |
+
"eval_loss": 0.2513893246650696,
|
408 |
+
"eval_precision": 0.7821782178217822,
|
409 |
+
"eval_recall": 0.8229166666666666,
|
410 |
+
"eval_runtime": 3.3391,
|
411 |
+
"eval_samples_per_second": 272.232,
|
412 |
+
"eval_steps_per_second": 34.141,
|
413 |
+
"step": 10010
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 23.0,
|
417 |
+
"eval_accuracy": 0.9709519365375642,
|
418 |
+
"eval_f1": 0.8110831234256927,
|
419 |
+
"eval_loss": 0.2518477439880371,
|
420 |
+
"eval_precision": 0.7853658536585366,
|
421 |
+
"eval_recall": 0.8385416666666666,
|
422 |
+
"eval_runtime": 3.3453,
|
423 |
+
"eval_samples_per_second": 271.724,
|
424 |
+
"eval_steps_per_second": 34.078,
|
425 |
+
"step": 10465
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 23.076923076923077,
|
429 |
+
"grad_norm": 0.00038343301275745034,
|
430 |
+
"learning_rate": 7.692307692307694e-06,
|
431 |
+
"loss": 0.0002,
|
432 |
+
"step": 10500
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 24.0,
|
436 |
+
"eval_accuracy": 0.9704853009799347,
|
437 |
+
"eval_f1": 0.8050632911392406,
|
438 |
+
"eval_loss": 0.25856369733810425,
|
439 |
+
"eval_precision": 0.7832512315270936,
|
440 |
+
"eval_recall": 0.828125,
|
441 |
+
"eval_runtime": 3.3535,
|
442 |
+
"eval_samples_per_second": 271.062,
|
443 |
+
"eval_steps_per_second": 33.995,
|
444 |
+
"step": 10920
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 24.175824175824175,
|
448 |
+
"grad_norm": 0.0008269179961644113,
|
449 |
+
"learning_rate": 3.2967032967032968e-06,
|
450 |
+
"loss": 0.0002,
|
451 |
+
"step": 11000
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 25.0,
|
455 |
+
"eval_accuracy": 0.9696686887540831,
|
456 |
+
"eval_f1": 0.7969924812030075,
|
457 |
+
"eval_loss": 0.2650408446788788,
|
458 |
+
"eval_precision": 0.7681159420289855,
|
459 |
+
"eval_recall": 0.828125,
|
460 |
+
"eval_runtime": 3.3206,
|
461 |
+
"eval_samples_per_second": 273.743,
|
462 |
+
"eval_steps_per_second": 34.331,
|
463 |
+
"step": 11375
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 25.0,
|
467 |
+
"step": 11375,
|
468 |
+
"total_flos": 2472027466589526.0,
|
469 |
+
"train_loss": 0.03293397539264553,
|
470 |
+
"train_runtime": 1492.2693,
|
471 |
+
"train_samples_per_second": 60.897,
|
472 |
+
"train_steps_per_second": 7.623
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"logging_steps": 500,
|
476 |
+
"max_steps": 11375,
|
477 |
+
"num_input_tokens_seen": 0,
|
478 |
+
"num_train_epochs": 25,
|
479 |
+
"save_steps": 500,
|
480 |
+
"stateful_callbacks": {
|
481 |
+
"TrainerControl": {
|
482 |
+
"args": {
|
483 |
+
"should_epoch_stop": false,
|
484 |
+
"should_evaluate": false,
|
485 |
+
"should_log": false,
|
486 |
+
"should_save": true,
|
487 |
+
"should_training_stop": true
|
488 |
+
},
|
489 |
+
"attributes": {}
|
490 |
+
}
|
491 |
+
},
|
492 |
+
"total_flos": 2472027466589526.0,
|
493 |
+
"train_batch_size": 8,
|
494 |
+
"trial_name": null,
|
495 |
+
"trial_params": null
|
496 |
+
}
|