import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple from Model.multi_head_Attention import MultiHeadAttention # Prelude Block (Initial Processing) class PreludeBlock(nn.Module): def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1): super().__init__() self.token_embedding = nn.Embedding(vocab_size, d_model) self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model)) self.attention = MultiHeadAttention(d_model, num_heads, dropout) self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model) self.feed_forward = nn.Sequential( nn.Linear(d_model, 4 * d_model), nn.GELU(), nn.Linear(4 * d_model, d_model), nn.Dropout(dropout) ) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: seq_len = x.size(1) x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :] attended = self.attention(self.norm1(x), mask) x = x + attended return x + self.feed_forward(self.norm2(x))