|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Tuple |
|
import math |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from model.latent_Recurrent import LatentRecurrentDepthLM |
|
|
|
|
|
class LatentRecurrentDepthConfig(PretrainedConfig): |
|
model_type = "latent_recurrent_depth" |
|
|
|
def __init__(self, vocab_size=50257, d_model=768, num_heads=12, dropout=0.1, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
|
|
|
|
|
|
class LatentRecurrentDepthModel(PreTrainedModel): |
|
config_class = LatentRecurrentDepthConfig |
|
base_model_prefix = "latent_recurrent_depth" |
|
|
|
def __init__(self, config: LatentRecurrentDepthConfig): |
|
super().__init__(config) |
|
self.latent_model = LatentRecurrentDepthLM(config.vocab_size, config.d_model, config.num_heads, config.dropout) |
|
self.init_weights() |
|
|
|
def forward(self, input_ids: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
return self.latent_model(input_ids, num_iterations, mask) |
|
|
|
def generate( |
|
self, |
|
input_ids: torch.Tensor, |
|
max_length: int = 20, |
|
num_iterations: int = 3, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = 50, |
|
) -> torch.Tensor: |
|
""" |
|
Generate a sequence of tokens given input_ids. |
|
|
|
Args: |
|
input_ids: torch.Tensor of shape (batch, seq_length) containing the prompt. |
|
max_length: The number of tokens to generate. |
|
num_iterations: The number of recurrent iterations to use in each forward pass. |
|
temperature: Temperature for scaling logits. |
|
top_k: If set, only sample from the top k tokens. |
|
|
|
Returns: |
|
generated: torch.Tensor containing the generated sequence. |
|
""" |
|
generated = input_ids.clone() |
|
self.eval() |
|
with torch.no_grad(): |
|
for _ in range(max_length): |
|
|
|
logits = self.forward(generated, num_iterations=num_iterations) |
|
|
|
next_token_logits = logits[:, -1, :] / temperature |
|
if top_k is not None: |
|
|
|
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k) |
|
probabilities = F.softmax(top_k_logits, dim=-1) |
|
next_token = top_k_indices.gather(-1, torch.multinomial(probabilities, num_samples=1)) |
|
else: |
|
probabilities = F.softmax(next_token_logits, dim=-1) |
|
next_token = torch.multinomial(probabilities, num_samples=1) |
|
generated = torch.cat([generated, next_token], dim=1) |
|
|
|
if next_token.item() == self.config.eos_token_id: |
|
break |
|
return generated |
|
|