Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO
|
3 |
+
datasets:
|
4 |
+
- OpenLLM-Ro/ro_dpo_helpsteer
|
5 |
+
language:
|
6 |
+
- ro
|
7 |
+
license: cc-by-nc-4.0
|
8 |
+
tags:
|
9 |
+
- llama-cpp
|
10 |
+
- gguf-my-repo
|
11 |
+
model-index:
|
12 |
+
- name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: text-generation
|
16 |
+
dataset:
|
17 |
+
name: RoMT-Bench
|
18 |
+
type: RoMT-Bench
|
19 |
+
metrics:
|
20 |
+
- type: Score
|
21 |
+
value: 5.87
|
22 |
+
name: Score
|
23 |
+
- type: Score
|
24 |
+
value: 6.22
|
25 |
+
name: First turn
|
26 |
+
- type: Score
|
27 |
+
value: 5.49
|
28 |
+
name: Second turn
|
29 |
+
- task:
|
30 |
+
type: text-generation
|
31 |
+
dataset:
|
32 |
+
name: RoCulturaBench
|
33 |
+
type: RoCulturaBench
|
34 |
+
metrics:
|
35 |
+
- type: Score
|
36 |
+
value: 4.4
|
37 |
+
name: Score
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
dataset:
|
41 |
+
name: Romanian_Academic_Benchmarks
|
42 |
+
type: Romanian_Academic_Benchmarks
|
43 |
+
metrics:
|
44 |
+
- type: accuracy
|
45 |
+
value: 49.96
|
46 |
+
name: Average accuracy
|
47 |
+
- task:
|
48 |
+
type: text-generation
|
49 |
+
dataset:
|
50 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
51 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
52 |
+
metrics:
|
53 |
+
- type: accuracy
|
54 |
+
value: 46.29
|
55 |
+
name: Average accuracy
|
56 |
+
- type: accuracy
|
57 |
+
value: 44.56
|
58 |
+
name: 0-shot
|
59 |
+
- type: accuracy
|
60 |
+
value: 45.42
|
61 |
+
name: 1-shot
|
62 |
+
- type: accuracy
|
63 |
+
value: 46.1
|
64 |
+
name: 3-shot
|
65 |
+
- type: accuracy
|
66 |
+
value: 46.27
|
67 |
+
name: 5-shot
|
68 |
+
- type: accuracy
|
69 |
+
value: 46.96
|
70 |
+
name: 10-shot
|
71 |
+
- type: accuracy
|
72 |
+
value: 48.41
|
73 |
+
name: 25-shot
|
74 |
+
- task:
|
75 |
+
type: text-generation
|
76 |
+
dataset:
|
77 |
+
name: OpenLLM-Ro/ro_mmlu
|
78 |
+
type: OpenLLM-Ro/ro_mmlu
|
79 |
+
metrics:
|
80 |
+
- type: accuracy
|
81 |
+
value: 53.29
|
82 |
+
name: Average accuracy
|
83 |
+
- type: accuracy
|
84 |
+
value: 52.33
|
85 |
+
name: 0-shot
|
86 |
+
- type: accuracy
|
87 |
+
value: 52.86
|
88 |
+
name: 1-shot
|
89 |
+
- type: accuracy
|
90 |
+
value: 54.06
|
91 |
+
name: 3-shot
|
92 |
+
- type: accuracy
|
93 |
+
value: 53.9
|
94 |
+
name: 5-shot
|
95 |
+
- task:
|
96 |
+
type: text-generation
|
97 |
+
dataset:
|
98 |
+
name: OpenLLM-Ro/ro_winogrande
|
99 |
+
type: OpenLLM-Ro/ro_winogrande
|
100 |
+
metrics:
|
101 |
+
- type: accuracy
|
102 |
+
value: 65.57
|
103 |
+
name: Average accuracy
|
104 |
+
- type: accuracy
|
105 |
+
value: 64.33
|
106 |
+
name: 0-shot
|
107 |
+
- type: accuracy
|
108 |
+
value: 64.72
|
109 |
+
name: 1-shot
|
110 |
+
- type: accuracy
|
111 |
+
value: 66.3
|
112 |
+
name: 3-shot
|
113 |
+
- type: accuracy
|
114 |
+
value: 66.93
|
115 |
+
name: 5-shot
|
116 |
+
- task:
|
117 |
+
type: text-generation
|
118 |
+
dataset:
|
119 |
+
name: OpenLLM-Ro/ro_hellaswag
|
120 |
+
type: OpenLLM-Ro/ro_hellaswag
|
121 |
+
metrics:
|
122 |
+
- type: accuracy
|
123 |
+
value: 58.15
|
124 |
+
name: Average accuracy
|
125 |
+
- type: accuracy
|
126 |
+
value: 57.45
|
127 |
+
name: 0-shot
|
128 |
+
- type: accuracy
|
129 |
+
value: 57.65
|
130 |
+
name: 1-shot
|
131 |
+
- type: accuracy
|
132 |
+
value: 58.18
|
133 |
+
name: 3-shot
|
134 |
+
- type: accuracy
|
135 |
+
value: 58.64
|
136 |
+
name: 5-shot
|
137 |
+
- type: accuracy
|
138 |
+
value: 58.85
|
139 |
+
name: 10-shot
|
140 |
+
- task:
|
141 |
+
type: text-generation
|
142 |
+
dataset:
|
143 |
+
name: OpenLLM-Ro/ro_gsm8k
|
144 |
+
type: OpenLLM-Ro/ro_gsm8k
|
145 |
+
metrics:
|
146 |
+
- type: accuracy
|
147 |
+
value: 34.77
|
148 |
+
name: Average accuracy
|
149 |
+
- type: accuracy
|
150 |
+
value: 32.52
|
151 |
+
name: 1-shot
|
152 |
+
- type: accuracy
|
153 |
+
value: 33.97
|
154 |
+
name: 3-shot
|
155 |
+
- type: accuracy
|
156 |
+
value: 37.83
|
157 |
+
name: 5-shot
|
158 |
+
- task:
|
159 |
+
type: text-generation
|
160 |
+
dataset:
|
161 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
162 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
163 |
+
metrics:
|
164 |
+
- type: accuracy
|
165 |
+
value: 41.7
|
166 |
+
name: Average accuracy
|
167 |
+
- task:
|
168 |
+
type: text-generation
|
169 |
+
dataset:
|
170 |
+
name: LaRoSeDa_binary
|
171 |
+
type: LaRoSeDa_binary
|
172 |
+
metrics:
|
173 |
+
- type: macro-f1
|
174 |
+
value: 97.48
|
175 |
+
name: Average macro-f1
|
176 |
+
- type: macro-f1
|
177 |
+
value: 97.67
|
178 |
+
name: 0-shot
|
179 |
+
- type: macro-f1
|
180 |
+
value: 97.07
|
181 |
+
name: 1-shot
|
182 |
+
- type: macro-f1
|
183 |
+
value: 97.4
|
184 |
+
name: 3-shot
|
185 |
+
- type: macro-f1
|
186 |
+
value: 97.8
|
187 |
+
name: 5-shot
|
188 |
+
- task:
|
189 |
+
type: text-generation
|
190 |
+
dataset:
|
191 |
+
name: LaRoSeDa_multiclass
|
192 |
+
type: LaRoSeDa_multiclass
|
193 |
+
metrics:
|
194 |
+
- type: macro-f1
|
195 |
+
value: 54.0
|
196 |
+
name: Average macro-f1
|
197 |
+
- type: macro-f1
|
198 |
+
value: 58.49
|
199 |
+
name: 0-shot
|
200 |
+
- type: macro-f1
|
201 |
+
value: 55.93
|
202 |
+
name: 1-shot
|
203 |
+
- type: macro-f1
|
204 |
+
value: 47.7
|
205 |
+
name: 3-shot
|
206 |
+
- type: macro-f1
|
207 |
+
value: 53.89
|
208 |
+
name: 5-shot
|
209 |
+
- task:
|
210 |
+
type: text-generation
|
211 |
+
dataset:
|
212 |
+
name: LaRoSeDa_binary_finetuned
|
213 |
+
type: LaRoSeDa_binary_finetuned
|
214 |
+
metrics:
|
215 |
+
- type: macro-f1
|
216 |
+
value: 0.0
|
217 |
+
name: Average macro-f1
|
218 |
+
- task:
|
219 |
+
type: text-generation
|
220 |
+
dataset:
|
221 |
+
name: LaRoSeDa_multiclass_finetuned
|
222 |
+
type: LaRoSeDa_multiclass_finetuned
|
223 |
+
metrics:
|
224 |
+
- type: macro-f1
|
225 |
+
value: 0.0
|
226 |
+
name: Average macro-f1
|
227 |
+
- task:
|
228 |
+
type: text-generation
|
229 |
+
dataset:
|
230 |
+
name: WMT_EN-RO
|
231 |
+
type: WMT_EN-RO
|
232 |
+
metrics:
|
233 |
+
- type: bleu
|
234 |
+
value: 22.09
|
235 |
+
name: Average bleu
|
236 |
+
- type: bleu
|
237 |
+
value: 8.63
|
238 |
+
name: 0-shot
|
239 |
+
- type: bleu
|
240 |
+
value: 25.89
|
241 |
+
name: 1-shot
|
242 |
+
- type: bleu
|
243 |
+
value: 26.79
|
244 |
+
name: 3-shot
|
245 |
+
- type: bleu
|
246 |
+
value: 27.05
|
247 |
+
name: 5-shot
|
248 |
+
- task:
|
249 |
+
type: text-generation
|
250 |
+
dataset:
|
251 |
+
name: WMT_RO-EN
|
252 |
+
type: WMT_RO-EN
|
253 |
+
metrics:
|
254 |
+
- type: bleu
|
255 |
+
value: 23.0
|
256 |
+
name: Average bleu
|
257 |
+
- type: bleu
|
258 |
+
value: 3.56
|
259 |
+
name: 0-shot
|
260 |
+
- type: bleu
|
261 |
+
value: 20.66
|
262 |
+
name: 1-shot
|
263 |
+
- type: bleu
|
264 |
+
value: 33.56
|
265 |
+
name: 3-shot
|
266 |
+
- type: bleu
|
267 |
+
value: 34.22
|
268 |
+
name: 5-shot
|
269 |
+
- task:
|
270 |
+
type: text-generation
|
271 |
+
dataset:
|
272 |
+
name: WMT_EN-RO_finetuned
|
273 |
+
type: WMT_EN-RO_finetuned
|
274 |
+
metrics:
|
275 |
+
- type: bleu
|
276 |
+
value: 0.0
|
277 |
+
name: Average bleu
|
278 |
+
- task:
|
279 |
+
type: text-generation
|
280 |
+
dataset:
|
281 |
+
name: WMT_RO-EN_finetuned
|
282 |
+
type: WMT_RO-EN_finetuned
|
283 |
+
metrics:
|
284 |
+
- type: bleu
|
285 |
+
value: 0.0
|
286 |
+
name: Average bleu
|
287 |
+
- task:
|
288 |
+
type: text-generation
|
289 |
+
dataset:
|
290 |
+
name: XQuAD
|
291 |
+
type: XQuAD
|
292 |
+
metrics:
|
293 |
+
- type: exact_match
|
294 |
+
value: 26.05
|
295 |
+
name: Average exact_match
|
296 |
+
- type: f1
|
297 |
+
value: 42.77
|
298 |
+
name: Average f1
|
299 |
+
- task:
|
300 |
+
type: text-generation
|
301 |
+
dataset:
|
302 |
+
name: XQuAD_finetuned
|
303 |
+
type: XQuAD_finetuned
|
304 |
+
metrics:
|
305 |
+
- type: exact_match
|
306 |
+
value: 0.0
|
307 |
+
name: Average exact_match
|
308 |
+
- type: f1
|
309 |
+
value: 0.0
|
310 |
+
name: Average f1
|
311 |
+
- task:
|
312 |
+
type: text-generation
|
313 |
+
dataset:
|
314 |
+
name: STS
|
315 |
+
type: STS
|
316 |
+
metrics:
|
317 |
+
- type: spearman
|
318 |
+
value: 79.64
|
319 |
+
name: Average spearman
|
320 |
+
- type: pearson
|
321 |
+
value: 79.52
|
322 |
+
name: Average pearson
|
323 |
+
- task:
|
324 |
+
type: text-generation
|
325 |
+
dataset:
|
326 |
+
name: STS_finetuned
|
327 |
+
type: STS_finetuned
|
328 |
+
metrics:
|
329 |
+
- type: spearman
|
330 |
+
value: 0.0
|
331 |
+
name: Average spearman
|
332 |
+
- type: pearson
|
333 |
+
value: 0.0
|
334 |
+
name: Average pearson
|
335 |
+
- task:
|
336 |
+
type: text-generation
|
337 |
+
dataset:
|
338 |
+
name: XQuAD_EM
|
339 |
+
type: XQuAD_EM
|
340 |
+
metrics:
|
341 |
+
- type: exact_match
|
342 |
+
value: 11.26
|
343 |
+
name: 0-shot
|
344 |
+
- type: exact_match
|
345 |
+
value: 34.29
|
346 |
+
name: 1-shot
|
347 |
+
- type: exact_match
|
348 |
+
value: 29.24
|
349 |
+
name: 3-shot
|
350 |
+
- type: exact_match
|
351 |
+
value: 29.41
|
352 |
+
name: 5-shot
|
353 |
+
- task:
|
354 |
+
type: text-generation
|
355 |
+
dataset:
|
356 |
+
name: XQuAD_F1
|
357 |
+
type: XQuAD_F1
|
358 |
+
metrics:
|
359 |
+
- type: f1
|
360 |
+
value: 22.98
|
361 |
+
name: 0-shot
|
362 |
+
- type: f1
|
363 |
+
value: 54.48
|
364 |
+
name: 1-shot
|
365 |
+
- type: f1
|
366 |
+
value: 46.18
|
367 |
+
name: 3-shot
|
368 |
+
- type: f1
|
369 |
+
value: 47.43
|
370 |
+
name: 5-shot
|
371 |
+
- task:
|
372 |
+
type: text-generation
|
373 |
+
dataset:
|
374 |
+
name: STS_Spearman
|
375 |
+
type: STS_Spearman
|
376 |
+
metrics:
|
377 |
+
- type: spearman
|
378 |
+
value: 79.99
|
379 |
+
name: 1-shot
|
380 |
+
- type: spearman
|
381 |
+
value: 78.42
|
382 |
+
name: 3-shot
|
383 |
+
- type: spearman
|
384 |
+
value: 80.51
|
385 |
+
name: 5-shot
|
386 |
+
- task:
|
387 |
+
type: text-generation
|
388 |
+
dataset:
|
389 |
+
name: STS_Pearson
|
390 |
+
type: STS_Pearson
|
391 |
+
metrics:
|
392 |
+
- type: pearson
|
393 |
+
value: 80.59
|
394 |
+
name: 1-shot
|
395 |
+
- type: pearson
|
396 |
+
value: 78.11
|
397 |
+
name: 3-shot
|
398 |
+
- type: pearson
|
399 |
+
value: 79.87
|
400 |
+
name: 5-shot
|
401 |
+
---
|
402 |
+
|
403 |
+
# code380/RoLlama3-8b-Instruct-DPO-Q8_0-GGUF
|
404 |
+
This model was converted to GGUF format from [`OpenLLM-Ro/RoLlama3-8b-Instruct-DPO`](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
405 |
+
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO) for more details on the model.
|
406 |
+
|
407 |
+
## Use with llama.cpp
|
408 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
409 |
+
|
410 |
+
```bash
|
411 |
+
brew install llama.cpp
|
412 |
+
|
413 |
+
```
|
414 |
+
Invoke the llama.cpp server or the CLI.
|
415 |
+
|
416 |
+
### CLI:
|
417 |
+
```bash
|
418 |
+
llama-cli --hf-repo code380/RoLlama3-8b-Instruct-DPO-Q8_0-GGUF --hf-file rollama3-8b-instruct-dpo-q8_0.gguf -p "The meaning to life and the universe is"
|
419 |
+
```
|
420 |
+
|
421 |
+
### Server:
|
422 |
+
```bash
|
423 |
+
llama-server --hf-repo code380/RoLlama3-8b-Instruct-DPO-Q8_0-GGUF --hf-file rollama3-8b-instruct-dpo-q8_0.gguf -c 2048
|
424 |
+
```
|
425 |
+
|
426 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
427 |
+
|
428 |
+
Step 1: Clone llama.cpp from GitHub.
|
429 |
+
```
|
430 |
+
git clone https://github.com/ggerganov/llama.cpp
|
431 |
+
```
|
432 |
+
|
433 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
434 |
+
```
|
435 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
436 |
+
```
|
437 |
+
|
438 |
+
Step 3: Run inference through the main binary.
|
439 |
+
```
|
440 |
+
./llama-cli --hf-repo code380/RoLlama3-8b-Instruct-DPO-Q8_0-GGUF --hf-file rollama3-8b-instruct-dpo-q8_0.gguf -p "The meaning to life and the universe is"
|
441 |
+
```
|
442 |
+
or
|
443 |
+
```
|
444 |
+
./llama-server --hf-repo code380/RoLlama3-8b-Instruct-DPO-Q8_0-GGUF --hf-file rollama3-8b-instruct-dpo-q8_0.gguf -c 2048
|
445 |
+
```
|