Create audio_only_processor.py
Browse files- audio_only_processor.py +81 -0
audio_only_processor.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# audio_only_processor.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Optional, Union
|
5 |
+
from transformers import WhisperFeatureExtractor, Qwen2TokenizerFast
|
6 |
+
from transformers.processing_utils import ProcessorMixin
|
7 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput
|
8 |
+
from transformers.feature_extraction_utils import BatchFeature
|
9 |
+
|
10 |
+
|
11 |
+
class AudioOnlyProcessor(ProcessorMixin):
|
12 |
+
"""
|
13 |
+
A processor class for AudioOnlyThinker. Handles only text + audio input (no image/video support).
|
14 |
+
"""
|
15 |
+
|
16 |
+
feature_extractor_class = "WhisperFeatureExtractor"
|
17 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
18 |
+
model_input_names = ["input_features", "attention_mask", "input_ids", "feature_attention_mask"]
|
19 |
+
|
20 |
+
def __init__(self, feature_extractor=None, tokenizer=None, chat_template=None):
|
21 |
+
self.audio_token = "<|AUDIO|>"
|
22 |
+
self.audio_bos_token = "<|audio_bos|>"
|
23 |
+
self.audio_eos_token = "<|audio_eos|>"
|
24 |
+
self.tokenizer = tokenizer
|
25 |
+
self.feature_extractor = feature_extractor
|
26 |
+
self.current_processor = self.tokenizer
|
27 |
+
self.chat_template = chat_template
|
28 |
+
|
29 |
+
def __call__(
|
30 |
+
self,
|
31 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
32 |
+
audios: Union[np.ndarray, List[np.ndarray]],
|
33 |
+
sampling_rate: Optional[int] = 16000,
|
34 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
35 |
+
**kwargs,
|
36 |
+
) -> BatchFeature:
|
37 |
+
if not isinstance(text, list):
|
38 |
+
text = [text]
|
39 |
+
|
40 |
+
audios_inputs = self.feature_extractor(
|
41 |
+
audios, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", **kwargs
|
42 |
+
)
|
43 |
+
audios_inputs["feature_attention_mask"] = audios_inputs.pop("attention_mask")
|
44 |
+
audios_inputs["input_features"] = audios_inputs.pop("input_features")
|
45 |
+
|
46 |
+
input_lengths = (audios_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
|
47 |
+
audio_lengths = (input_lengths - 2) // 2 + 1
|
48 |
+
|
49 |
+
# Replace <|AUDIO|> token with audio_placeholder repeated by length
|
50 |
+
for i in range(len(text)):
|
51 |
+
text[i] = text[i].replace(
|
52 |
+
self.audio_token,
|
53 |
+
"<|audio_placeholder|>" * audio_lengths[0], # assumes 1 audio per input
|
54 |
+
1,
|
55 |
+
)
|
56 |
+
text[i] = text[i].replace("<|audio_placeholder|>", self.audio_token)
|
57 |
+
|
58 |
+
text_inputs = self.tokenizer(text, padding=padding, return_tensors=kwargs.get("return_tensors", None))
|
59 |
+
|
60 |
+
return BatchFeature(data={**text_inputs, **audios_inputs}, tensor_type=kwargs.get("return_tensors"))
|
61 |
+
|
62 |
+
def apply_chat_template(self, conversations, chat_template=None, **kwargs):
|
63 |
+
if isinstance(conversations[0], dict):
|
64 |
+
conversations = [conversations]
|
65 |
+
return self.tokenizer.apply_chat_template(conversations, chat_template=chat_template, **kwargs)
|
66 |
+
|
67 |
+
def batch_decode(self, *args, **kwargs):
|
68 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
69 |
+
|
70 |
+
def decode(self, *args, **kwargs):
|
71 |
+
return self.tokenizer.decode(*args, **kwargs)
|
72 |
+
|
73 |
+
@classmethod
|
74 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
75 |
+
tokenizer = Qwen2TokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
76 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
77 |
+
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
78 |
+
|
79 |
+
def save_pretrained(self, save_directory):
|
80 |
+
self.tokenizer.save_pretrained(save_directory)
|
81 |
+
self.feature_extractor.save_pretrained(save_directory)
|