Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +259 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: qwen-2.5-0.5B-instruct-sft-lora-countdown-search-1k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for qwen-2.5-0.5B-instruct-sft-lora-countdown-search-1k
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="chloeli/qwen-2.5-0.5B-instruct-sft-lora-countdown-search-1k", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chloeli/huggingface/runs/xpszqgbn)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.3.2
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 4403744057851904.0,
|
3 |
+
"train_loss": 0.09763943994045257,
|
4 |
+
"train_runtime": 360.1115,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 2.777,
|
7 |
+
"train_steps_per_second": 0.347
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 4403744057851904.0,
|
3 |
+
"train_loss": 0.09763943994045257,
|
4 |
+
"train_runtime": 360.1115,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 2.777,
|
7 |
+
"train_steps_per_second": 0.347
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 125,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 0.679400622844696,
|
14 |
+
"learning_rate": 1.5384615384615387e-05,
|
15 |
+
"loss": 0.4779,
|
16 |
+
"mean_token_accuracy": 0.8891920745372772,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.04,
|
21 |
+
"grad_norm": 0.6668949127197266,
|
22 |
+
"learning_rate": 7.692307692307693e-05,
|
23 |
+
"loss": 0.4667,
|
24 |
+
"mean_token_accuracy": 0.8981523290276527,
|
25 |
+
"step": 5
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.08,
|
29 |
+
"grad_norm": 0.3423958718776703,
|
30 |
+
"learning_rate": 0.00015384615384615385,
|
31 |
+
"loss": 0.3903,
|
32 |
+
"mean_token_accuracy": 0.9041526615619659,
|
33 |
+
"step": 10
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.12,
|
37 |
+
"grad_norm": 0.28169184923171997,
|
38 |
+
"learning_rate": 0.00019984268150178167,
|
39 |
+
"loss": 0.2622,
|
40 |
+
"mean_token_accuracy": 0.9287902176380157,
|
41 |
+
"step": 15
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.16,
|
45 |
+
"grad_norm": 0.22763028740882874,
|
46 |
+
"learning_rate": 0.00019807852804032305,
|
47 |
+
"loss": 0.1656,
|
48 |
+
"mean_token_accuracy": 0.9465068757534028,
|
49 |
+
"step": 20
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.2,
|
53 |
+
"grad_norm": 0.1743064969778061,
|
54 |
+
"learning_rate": 0.00019438833303083678,
|
55 |
+
"loss": 0.0896,
|
56 |
+
"mean_token_accuracy": 0.9682954549789429,
|
57 |
+
"step": 25
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"grad_norm": 0.0910598486661911,
|
62 |
+
"learning_rate": 0.00018884456359788724,
|
63 |
+
"loss": 0.0624,
|
64 |
+
"mean_token_accuracy": 0.9762519419193267,
|
65 |
+
"step": 30
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.28,
|
69 |
+
"grad_norm": 0.1415988653898239,
|
70 |
+
"learning_rate": 0.00018155608689592604,
|
71 |
+
"loss": 0.0676,
|
72 |
+
"mean_token_accuracy": 0.9724054753780365,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.32,
|
77 |
+
"grad_norm": 0.15753652155399323,
|
78 |
+
"learning_rate": 0.0001726660322034027,
|
79 |
+
"loss": 0.0631,
|
80 |
+
"mean_token_accuracy": 0.9734513998031616,
|
81 |
+
"step": 40
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.36,
|
85 |
+
"grad_norm": 0.14174672961235046,
|
86 |
+
"learning_rate": 0.00016234898018587337,
|
87 |
+
"loss": 0.0558,
|
88 |
+
"mean_token_accuracy": 0.976895785331726,
|
89 |
+
"step": 45
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.4,
|
93 |
+
"grad_norm": 0.1046091765165329,
|
94 |
+
"learning_rate": 0.00015080753452465296,
|
95 |
+
"loss": 0.0582,
|
96 |
+
"mean_token_accuracy": 0.9748494327068329,
|
97 |
+
"step": 50
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.44,
|
101 |
+
"grad_norm": 0.09198472648859024,
|
102 |
+
"learning_rate": 0.000138268343236509,
|
103 |
+
"loss": 0.0552,
|
104 |
+
"mean_token_accuracy": 0.9761805891990661,
|
105 |
+
"step": 55
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.48,
|
109 |
+
"grad_norm": 0.07517699152231216,
|
110 |
+
"learning_rate": 0.0001249776478167227,
|
111 |
+
"loss": 0.0542,
|
112 |
+
"mean_token_accuracy": 0.9768649995326996,
|
113 |
+
"step": 60
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.52,
|
117 |
+
"grad_norm": 0.09316771477460861,
|
118 |
+
"learning_rate": 0.00011119644761033078,
|
119 |
+
"loss": 0.0511,
|
120 |
+
"mean_token_accuracy": 0.9787204623222351,
|
121 |
+
"step": 65
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.56,
|
125 |
+
"grad_norm": 0.09173958748579025,
|
126 |
+
"learning_rate": 9.719537437241312e-05,
|
127 |
+
"loss": 0.05,
|
128 |
+
"mean_token_accuracy": 0.9781815230846405,
|
129 |
+
"step": 70
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6,
|
133 |
+
"grad_norm": 0.10948050022125244,
|
134 |
+
"learning_rate": 8.324937766952638e-05,
|
135 |
+
"loss": 0.05,
|
136 |
+
"mean_token_accuracy": 0.9780394077301026,
|
137 |
+
"step": 75
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.64,
|
141 |
+
"grad_norm": 0.06583424657583237,
|
142 |
+
"learning_rate": 6.963232548903853e-05,
|
143 |
+
"loss": 0.0512,
|
144 |
+
"mean_token_accuracy": 0.9775851011276245,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.68,
|
149 |
+
"grad_norm": 0.081637904047966,
|
150 |
+
"learning_rate": 5.6611626088244194e-05,
|
151 |
+
"loss": 0.0537,
|
152 |
+
"mean_token_accuracy": 0.9765498995780945,
|
153 |
+
"step": 85
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.72,
|
157 |
+
"grad_norm": 0.12278567999601364,
|
158 |
+
"learning_rate": 4.444297669803981e-05,
|
159 |
+
"loss": 0.0486,
|
160 |
+
"mean_token_accuracy": 0.9790335714817047,
|
161 |
+
"step": 90
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.76,
|
165 |
+
"grad_norm": 0.06769045442342758,
|
166 |
+
"learning_rate": 3.336534220479961e-05,
|
167 |
+
"loss": 0.0515,
|
168 |
+
"mean_token_accuracy": 0.9783276081085205,
|
169 |
+
"step": 95
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.8,
|
173 |
+
"grad_norm": 0.08743651956319809,
|
174 |
+
"learning_rate": 2.3596262417839255e-05,
|
175 |
+
"loss": 0.0475,
|
176 |
+
"mean_token_accuracy": 0.9792425632476807,
|
177 |
+
"step": 100
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.84,
|
181 |
+
"grad_norm": 0.07326360791921616,
|
182 |
+
"learning_rate": 1.5327580077171587e-05,
|
183 |
+
"loss": 0.0489,
|
184 |
+
"mean_token_accuracy": 0.9790730774402618,
|
185 |
+
"step": 105
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.88,
|
189 |
+
"grad_norm": 0.0983777642250061,
|
190 |
+
"learning_rate": 8.72167349386811e-06,
|
191 |
+
"loss": 0.0511,
|
192 |
+
"mean_token_accuracy": 0.9783868014812469,
|
193 |
+
"step": 110
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.92,
|
197 |
+
"grad_norm": 0.08176760375499725,
|
198 |
+
"learning_rate": 3.908267805490051e-06,
|
199 |
+
"loss": 0.0496,
|
200 |
+
"mean_token_accuracy": 0.9781703352928162,
|
201 |
+
"step": 115
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.96,
|
205 |
+
"grad_norm": 0.08720585703849792,
|
206 |
+
"learning_rate": 9.818874663554357e-07,
|
207 |
+
"loss": 0.0455,
|
208 |
+
"mean_token_accuracy": 0.9797735631465911,
|
209 |
+
"step": 120
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.0,
|
213 |
+
"grad_norm": 0.07412629574537277,
|
214 |
+
"learning_rate": 0.0,
|
215 |
+
"loss": 0.0492,
|
216 |
+
"mean_token_accuracy": 0.9789807200431824,
|
217 |
+
"step": 125
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 1.0,
|
221 |
+
"eval_loss": 0.04896746948361397,
|
222 |
+
"eval_mean_token_accuracy": 0.9787813196182251,
|
223 |
+
"eval_runtime": 82.9625,
|
224 |
+
"eval_samples_per_second": 12.054,
|
225 |
+
"eval_steps_per_second": 1.507,
|
226 |
+
"step": 125
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.0,
|
230 |
+
"step": 125,
|
231 |
+
"total_flos": 4403744057851904.0,
|
232 |
+
"train_loss": 0.09763943994045257,
|
233 |
+
"train_runtime": 360.1115,
|
234 |
+
"train_samples_per_second": 2.777,
|
235 |
+
"train_steps_per_second": 0.347
|
236 |
+
}
|
237 |
+
],
|
238 |
+
"logging_steps": 5,
|
239 |
+
"max_steps": 125,
|
240 |
+
"num_input_tokens_seen": 0,
|
241 |
+
"num_train_epochs": 1,
|
242 |
+
"save_steps": 100,
|
243 |
+
"stateful_callbacks": {
|
244 |
+
"TrainerControl": {
|
245 |
+
"args": {
|
246 |
+
"should_epoch_stop": false,
|
247 |
+
"should_evaluate": false,
|
248 |
+
"should_log": false,
|
249 |
+
"should_save": true,
|
250 |
+
"should_training_stop": true
|
251 |
+
},
|
252 |
+
"attributes": {}
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"total_flos": 4403744057851904.0,
|
256 |
+
"train_batch_size": 4,
|
257 |
+
"trial_name": null,
|
258 |
+
"trial_params": null
|
259 |
+
}
|