---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Could you step back a bit?
- text: Move to the right
- text: Go ahead in this direction a little
- text: Adjust your position slightly to the right
- text: Proceed forward along this path
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------|
| forward |
- 'Proceed along this path ahead'
- 'Proceed carefully in that direction'
- 'Proceed forward a little'
|
| right | - 'Move toward the right'
- 'Adjust your position to the right'
- 'Adjust your position slightly to the right'
|
| left | - 'Head towards the left side'
- 'Move towards your left'
- 'Shift your way to the left'
|
| backward | - 'Could you step back slightly?'
- 'Move backward, please'
- 'Could you go back the other way?'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cahlen/setfit-navigation-instructions")
# Run inference
preds = model("Move to the right")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 5.0 | 12 |
| Label | Training Sample Count |
|:---------|:----------------------|
| right | 22 |
| left | 21 |
| forward | 11 |
| backward | 13 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0024 | 1 | 0.1239 | - |
| 0.1220 | 50 | 0.1257 | - |
| 0.2439 | 100 | 0.0215 | - |
| 0.3659 | 150 | 0.0047 | - |
| 0.4878 | 200 | 0.0025 | - |
| 0.6098 | 250 | 0.0017 | - |
| 0.7317 | 300 | 0.0014 | - |
| 0.8537 | 350 | 0.0011 | - |
| 0.9756 | 400 | 0.0013 | - |
| 1.0 | 410 | - | 0.0182 |
| 1.0976 | 450 | 0.0009 | - |
| 1.2195 | 500 | 0.0008 | - |
| 1.3415 | 550 | 0.0007 | - |
| 1.4634 | 600 | 0.0007 | - |
| 1.5854 | 650 | 0.0006 | - |
| 1.7073 | 700 | 0.0007 | - |
| 1.8293 | 750 | 0.0006 | - |
| 1.9512 | 800 | 0.0006 | - |
| 2.0 | 820 | - | 0.0227 |
| 2.0732 | 850 | 0.0005 | - |
| 2.1951 | 900 | 0.0005 | - |
| 2.3171 | 950 | 0.0006 | - |
| 2.4390 | 1000 | 0.0005 | - |
| 2.5610 | 1050 | 0.0006 | - |
| 2.6829 | 1100 | 0.0005 | - |
| 2.8049 | 1150 | 0.0005 | - |
| 2.9268 | 1200 | 0.0004 | - |
| 3.0 | 1230 | - | 0.0236 |
| 3.0488 | 1250 | 0.0004 | - |
| 3.1707 | 1300 | 0.0004 | - |
| 3.2927 | 1350 | 0.0004 | - |
| 3.4146 | 1400 | 0.0005 | - |
| 3.5366 | 1450 | 0.0004 | - |
| 3.6585 | 1500 | 0.0004 | - |
| 3.7805 | 1550 | 0.0004 | - |
| 3.9024 | 1600 | 0.0004 | - |
| 4.0 | 1640 | - | 0.0240 |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.8.0.dev20250331+cu128
- Datasets: 3.5.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```