Update README.md
Browse files
README.md
CHANGED
@@ -48,6 +48,84 @@ sequences = pipeline(
|
|
48 |
for seq in sequences:
|
49 |
print(f"Result: {seq['generated_text']}")
|
50 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
Output:
|
53 |
>"Prédiction" is a noun that refers to the act of making a forecast or an estimate of something that will happen in the future. It can also refer to the result of such a forecast or estimate.
|
|
|
48 |
for seq in sequences:
|
49 |
print(f"Result: {seq['generated_text']}")
|
50 |
```
|
51 |
+
``` python
|
52 |
+
# !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
|
53 |
+
|
54 |
+
import os
|
55 |
+
import torch
|
56 |
+
from datasets import load_dataset
|
57 |
+
from transformers import (
|
58 |
+
AutoModelForCausalLM,
|
59 |
+
AutoTokenizer,
|
60 |
+
BitsAndBytesConfig,
|
61 |
+
Trainer,
|
62 |
+
HfArgumentParser,
|
63 |
+
TrainingArguments,
|
64 |
+
pipeline,
|
65 |
+
logging,
|
66 |
+
)
|
67 |
+
from peft import LoraConfig, PeftModel
|
68 |
+
from trl import SFTTrainer
|
69 |
+
|
70 |
+
###############################################################################
|
71 |
+
# bitsandbytes parameters
|
72 |
+
################################################################################
|
73 |
+
|
74 |
+
# Activate 4-bit precision base model loading
|
75 |
+
use_4bit = True
|
76 |
+
|
77 |
+
# Compute dtype for 4-bit base models
|
78 |
+
bnb_4bit_compute_dtype = "float16"
|
79 |
+
|
80 |
+
# Quantization type (fp4 or nf4)
|
81 |
+
bnb_4bit_quant_type = "nf4"
|
82 |
+
|
83 |
+
# Activate nested quantization for 4-bit base models (double quantization)
|
84 |
+
use_nested_quant = False
|
85 |
+
|
86 |
+
################################################################################
|
87 |
+
# SFT parameters
|
88 |
+
################################################################################
|
89 |
+
|
90 |
+
# Maximum sequence length to use
|
91 |
+
max_seq_length = None
|
92 |
+
|
93 |
+
# Pack multiple short examples in the same input sequence to increase efficiency
|
94 |
+
packing = False
|
95 |
+
|
96 |
+
# Load the entire model on the GPU 0
|
97 |
+
device_map = {"": 0}
|
98 |
+
|
99 |
+
model_name="bosbos/bosbos-2-7b"
|
100 |
+
# Load tokenizer and model with QLoRA configuration
|
101 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
102 |
+
|
103 |
+
bnb_config = BitsAndBytesConfig(
|
104 |
+
load_in_4bit=use_4bit,
|
105 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
106 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
107 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
108 |
+
)
|
109 |
+
# Load base model
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(
|
111 |
+
model_name,
|
112 |
+
quantization_config=bnb_config,
|
113 |
+
device_map=device_map
|
114 |
+
)
|
115 |
+
model.config.use_cache = False
|
116 |
+
model.config.pretraining_tp = 1
|
117 |
+
|
118 |
+
# Load LLaMA tokenizer
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
120 |
+
tokenizer.pad_token = tokenizer.eos_token
|
121 |
+
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
122 |
+
|
123 |
+
# Run text generation pipeline with our next model
|
124 |
+
prompt = "what is prediction in frensh ?"
|
125 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
126 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
127 |
+
print(result[0]['generated_text'])
|
128 |
+
```
|
129 |
|
130 |
Output:
|
131 |
>"Prédiction" is a noun that refers to the act of making a forecast or an estimate of something that will happen in the future. It can also refer to the result of such a forecast or estimate.
|