bhumong commited on
Commit
2e23403
·
verified ·
1 Parent(s): d319b0c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - PedroSampaio/fruits-360
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/efficientnet-b0
9
+ pipeline_tag: image-classification
10
+ tags:
11
+ - pytorch
12
+ - torchvision
13
+ - efficientnet
14
+ - image-classification
15
+ - fruits
16
+ - fruits-360
17
+ - transfer-learning
18
+ - neptune-ai
19
+ widget:
20
+ # Example image URLs from the web - replace if you have better ones
21
+ - src: https://images.unsplash.com/photo-1573246123790-a64e870b8b1a?ixlib=rb-1.2.1&auto=format&fit=crop&w=640 # Example Apple
22
+ example_title: Apple Example
23
+ - src: https://images.unsplash.com/photo-1528825871115-3581a5377919?ixlib=rb-1.2.1&auto=format&fit=crop&w=640 # Example Banana
24
+ example_title: Banana Example
25
+ ---
26
+
27
+ # Fruit Classifier - EfficientNet-B0 (Fruits-360 Merged)
28
+
29
+ This repository contains a fruit image classification model based on a fine-tuned **EfficientNet-B0** architecture using PyTorch and torchvision. The model was trained on the **Fruits-360 dataset**, with a modification where specific fruit variants were merged into broader categories (e.g., "Apple Red 1", "Apple 6" merged into "Apple"), resulting in **[76]** distinct classes. <-- Make sure this matches your actual class count
30
+
31
+ Training progress and metrics were tracked using **Neptune.ai**.
32
+
33
+ ## Model Description
34
+
35
+ * **Architecture:** EfficientNet-B0 (pre-trained on ImageNet)
36
+ * **Fine-tuning Strategy:** Transfer learning. The pre-trained base model's weights were frozen, and only the final classifier layer was replaced and trained on the target dataset.
37
+ * **Framework:** PyTorch / torchvision
38
+ * **Task:** Image Classification
39
+ * **Dataset:** Fruits-360 (Merged Classes)
40
+ * **Number of Classes:** [76] <-- Make sure this matches your actual class count
41
+
42
+ ## Intended Uses & Limitations
43
+
44
+ * **Intended Use:** Classifying images of fruits belonging to one of the [76] merged categories derived from the Fruits-360 dataset. Suitable for educational purposes, demonstrations, or as a baseline for further development.
45
+ * **Limitations:**
46
+ * Trained *only* on the Fruits-360 dataset. Performance on images significantly different from this dataset (e.g., different lighting, backgrounds, occlusions, fruit varieties not present) is not guaranteed.
47
+ * Only recognizes the specific [76] merged classes it was trained on.
48
+ * Performance may vary depending on input image quality.
49
+ * Not intended for safety-critical applications without rigorous testing and validation.
50
+
51
+ ## How to Use
52
+
53
+ You can load the model and its configuration directly from the Hugging Face Hub using `torch`, `torchvision`, and `huggingface_hub`.
54
+
55
+ ```python
56
+ import torch
57
+ import torchvision.models as models
58
+ from torchvision.models import EfficientNet_B0_Weights # Or the specific version used
59
+ from PIL import Image
60
+ from torchvision import transforms
61
+ import json
62
+ import requests
63
+ from huggingface_hub import hf_hub_download
64
+ import os
65
+
66
+ # --- 1. Define Model Loading Function ---
67
+ def load_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.json"):
68
+ """Loads model state_dict and config from Hugging Face Hub."""
69
+
70
+ # Download config file
71
+ config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
72
+ with open(config_path, 'r') as f:
73
+ config = json.load(f)
74
+
75
+ num_labels = config['num_labels']
76
+ id2label = config['id2label'] # Load label mapping
77
+
78
+ # Instantiate the correct architecture (EfficientNet-B0)
79
+ # Load architecture without pre-trained weights, as we'll load our fine-tuned ones
80
+ model = models.efficientnet_b0(weights=None)
81
+
82
+ # Modify the classifier head to match the number of classes used during training
83
+ num_ftrs = model.classifier[1].in_features
84
+ model.classifier[1] = torch.nn.Linear(num_ftrs, num_labels)
85
+
86
+ # Download model weights
87
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
88
+
89
+ # Load the state dict
90
+ # Ensure map_location handles CPU/GPU as needed
91
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
92
+ state_dict = torch.load(model_path, map_location=device)
93
+ model.load_state_dict(state_dict)
94
+
95
+ model.eval() # Set to evaluation mode
96
+ print(f"Model loaded successfully from {repo_id} and set to evaluation mode.")
97
+ return model, config, id2label
98
+
99
+ # --- 2. Define Preprocessing ---
100
+ # Use the same transformations as validation during training
101
+ IMG_SIZE = (224, 224) # Standard EfficientNet input size
102
+ # ImageNet stats often used with EfficientNet pre-training
103
+ mean=[0.485, 0.456, 0.406]
104
+ std=[0.229, 0.224, 0.225]
105
+
106
+ preprocess = transforms.Compose([
107
+ transforms.Resize(IMG_SIZE),
108
+ transforms.ToTensor(),
109
+ transforms.Normalize(mean=mean, std=std),
110
+ ])
111
+
112
+ # --- 3. Load Model ---
113
+ repo_id_to_load = "Bhumong/fruit-classifier-efficientnet-b0" # Your repo ID
114
+ model, config, id2label = load_model_from_hf(repo_id_to_load)
115
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
116
+ model.to(device)
117
+
118
+
119
+ # --- 4. Prepare Input Image ---
120
+ # Example: Load an image file (replace with your image path)
121
+ image_path = "path/to/your/fruit_image.jpg" # <-- REPLACE WITH YOUR IMAGE PATH
122
+
123
+ if not os.path.exists(image_path):
124
+ print(f"Warning: Image path not found: {image_path}")
125
+ print("Skipping prediction. Please provide a valid image path.")
126
+ input_batch = None
127
+ else:
128
+ try:
129
+ img = Image.open(image_path).convert("RGB")
130
+ input_tensor = preprocess(img)
131
+ # Add batch dimension (model expects batches)
132
+ input_batch = input_tensor.unsqueeze(0)
133
+ input_batch = input_batch.to(device)
134
+ except Exception as e:
135
+ print(f"Error processing image {image_path}: {e}")
136
+ input_batch = None
137
+
138
+ # --- 5. Make Prediction ---
139
+ if input_batch is not None:
140
+ with torch.no_grad(): # Disable gradient calculations for inference
141
+ output = model(input_batch)
142
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
143
+ top_prob, top_catid = torch.max(probabilities, dim=0)
144
+
145
+ predicted_label_index = top_catid.item()
146
+ # Use the id2label mapping loaded from config
147
+ predicted_label = id2label.get(str(predicted_label_index), "Unknown Label")
148
+ confidence = top_prob.item()
149
+
150
+ print(f"\nPrediction for: {os.path.basename(image_path)}")
151
+ print(f"Predicted Label Index: {predicted_label_index}")
152
+ print(f"Predicted Label: {predicted_label}")
153
+ print(f"Confidence: {confidence:.4f}")
154
+
155
+