optimum-neuron-cache
/
neuronxcc-2.15.128.0+56dc5a86
/0_REGISTRY
/0.0.25.dev0
/training
/llama
/meta-llama
/Llama-3.2-1B
/00b0f8812935e791fff6.json
{"architectures": ["LlamaForCausalLM"], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 128256, "eos_token_id": 128257, "head_dim": 64, "hidden_act": "silu", "hidden_size": 2048, "initializer_range": 0.02, "intermediate_size": 8192, "max_position_embeddings": 131072, "mlp_bias": false, "model_type": "llama", "neuron": {"compiler_version": "2.15.128.0+56dc5a86", "input_specs": {"chosen": ["<|im_start|>user\nSimplify $\\sqrt{8} \\times \\sqrt{50}$.<|im_end|>\n<|im_start|>assistant\nI notice that both 8 and 50 have some perfect square factors, so I can try to rewrite them as products of those factors and see if anything simplifies.\nFor 8, I can write it as 4 times 2, and for 50, I can write it as 25 times 2.\nSo I have $\\sqrt{8} \\times \\sqrt{50} = \\sqrt{4 \\times 2} \\times \\sqrt{25 \\times 2}$.\nNow I can use the property that $\\sqrt{a \\times b} = \\sqrt{a} \\times \\sqrt{b}$ for any positive numbers a and b.\nThis gives me $\\sqrt{4 \\times 2} \\times \\sqrt{25 \\times 2} = \\sqrt{4} \\times \\sqrt{2} \\times \\sqrt{25} \\times \\sqrt{2}$.\nI can simplify the square roots of 4 and 25, since they are perfect squares.\nThis gives me $\\sqrt{4} \\times \\sqrt{2} \\times \\sqrt{25} \\times \\sqrt{2} = 2 \\times \\sqrt{2} \\times 5 \\times \\sqrt{2}$.\nI can rearrange the factors and multiply the integers together.\nThis gives me $2 \\times \\sqrt{2} \\times 5 \\times \\sqrt{2} = 10 \\times \\sqrt{2} \\times \\sqrt{2}$.\nFinally, I can multiply the square roots of 2 together, using the same property as before.\nThis gives me $10 \\times \\sqrt{2} \\times \\sqrt{2} = 10 \\times 2 = 20$.\nSo I have simplified the expression to 20.\n# Answer\n\n20<|im_end|>\n"], "chosen_attention_mask": [1, 512], "chosen_input_ids": [1, 512], "chosen_labels": [1, 512], "prompt": ["Simplify $\\sqrt{8} \\times \\sqrt{50}$."], "prompt_attention_mask": [1, 512], "prompt_input_ids": [1, 512], "question": ["Simplify $\\sqrt{8} \\times \\sqrt{50}$."], "rejected": ["<|im_start|>user\nSimplify $\\sqrt{8} \\times \\sqrt{50}$.<|im_end|>\n<|im_start|>assistant\nSince a square root is an exponent of $\\frac{1}{2}$ and since exponents distribute across multiplication, we can combine the radicals. \\[\n\\sqrt{8}\\cdot \\sqrt{50}=\\sqrt{8\\cdot50}.\n\\] Now split the radicand into prime factors: $8\\cdot50=2\\cdot2\\cdot2\\cdot2\\cdot5^2=(2\\cdot2)^2\\cdot5^2$. We find $\\sqrt{8\\cdot50}=\\sqrt{(2\\cdot2)^2\\cdot5^2}=2\\cdot2\\cdot5=\\boxed{20}$.<|im_end|>\n"], "rejected_attention_mask": [1, 512], "rejected_input_ids": [1, 512], "rejected_labels": [1, 512], "source": ["prm_dpo_pairs"]}, "model_class": "PeftModelForCausalLM", "num_neuron_cores_per_node": 2, "pipeline_parallel_size": 1, "precision": "bfloat16", "tensor_parallel_size": 1, "training": true}, "num_attention_heads": 32, "num_hidden_layers": 16, "num_key_value_heads": 8, "pad_token_id": 128257, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": {"factor": 32.0, "high_freq_factor": 4.0, "low_freq_factor": 1.0, "original_max_position_embeddings": 8192, "rope_type": "llama3"}, "rope_theta": 500000.0, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "use_cache": true, "vocab_size": 128258} |