# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import sys from dataclasses import dataclass from typing import Optional, List from omegaconf import II from fairseq.data.iterators import GroupedEpochBatchIterator from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task from fairseq.tasks.audio_pretraining import AudioPretrainingConfig, AudioPretrainingTask from fairseq.tasks.masked_lm import MaskedLMConfig, MaskedLMTask from .mae_image_pretraining import MaeImagePretrainingConfig, MaeImagePretrainingTask from examples.data2vec.data.modality import Modality from fairseq.data.audio.multi_modality_dataset import ( MultiModalityDataset, ModalityDatasetItem, ) @dataclass class MultimodalPretrainingConfig(FairseqDataclass): audio: Optional[AudioPretrainingConfig] = None image: Optional[MaeImagePretrainingConfig] = None text: Optional[MaskedLMConfig] = None audio_ratio: float = 1 image_ratio: float = 1 text_ratio: float = 1 max_tokens: Optional[int] = II("dataset.max_tokens") batch_size: Optional[int] = II("dataset.batch_size") update_freq: List[int] = II("optimization.update_freq") rebuild_batches: bool = True @register_task("multimodal_pretraining", dataclass=MultimodalPretrainingConfig) class MultimodalPretrainingTask(FairseqTask): """ """ cfg: MultimodalPretrainingConfig def __init__(self, cfg: MultimodalPretrainingConfig): super().__init__(cfg) self.audio_task = ( AudioPretrainingTask(cfg.audio) if cfg.audio is not None else None ) self.image_task = ( MaeImagePretrainingTask(cfg.image) if cfg.image is not None else None ) self.text_task = MaskedLMTask(cfg.text) if cfg.text is not None else None self.mult_ratios = [] @classmethod def setup_task(cls, cfg: MultimodalPretrainingConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: cfg (AudioPretrainingConfig): configuration of this task """ return cls(cfg) def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs): datasets = [] self.mult_ratios = [] def load_ds(task, name, ratio): if task is not None: task.load_dataset(split) ds = ModalityDatasetItem( datasetname=name, dataset=task.dataset(split), max_positions=task.max_positions(), max_tokens=self.cfg.max_tokens, max_sentences=self.cfg.batch_size, ) datasets.append(ds) self.mult_ratios.append(ratio) load_ds(self.audio_task, Modality.AUDIO, self.cfg.audio_ratio) load_ds(self.image_task, Modality.IMAGE, self.cfg.image_ratio) load_ds(self.text_task, Modality.TEXT, self.cfg.text_ratio) assert len(datasets) > 0 self.datasets[split] = MultiModalityDataset(datasets) @property def supported_modalities(self): modalities = [] if self.cfg.text is not None: modalities.append(Modality.TEXT) if self.cfg.audio is not None: modalities.append(Modality.AUDIO) if self.cfg.image is not None: modalities.append(Modality.IMAGE) return modalities def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=0, data_buffer_size=0, disable_iterator_cache=False, skip_remainder_batch=False, grouped_shuffling=False, update_epoch_batch_itr=False, ): # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) batch_samplers = dataset.get_batch_samplers( self.mult_ratios, required_batch_size_multiple, seed ) # return a reusable, sharded iterator epoch_iter = GroupedEpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_samplers=batch_samplers, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, mult_rate=max(self.cfg.update_freq), buffer_size=data_buffer_size, skip_remainder_batch=skip_remainder_batch, ) self.dataset_to_epoch_iter[dataset] = {} # refresh it every epoch return epoch_iter @property def source_dictionary(self): return None @property def target_dictionary(self): return None def max_positions(self): """Maximum input length supported by the encoder.""" return sys.maxsize, sys.maxsize