# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional import logging import math import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.modules import EMAModule, EMAModuleConfig from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, ) from fairseq.models.roberta.model import RobertaLMHead, RobertaClassificationHead from fairseq.models.transformer import TransformerEncoder, TransformerConfig from fairseq.modules.transformer_sentence_encoder import init_bert_params logger = logging.getLogger(__name__) @dataclass class Data2VecTextConfig(FairseqDataclass): max_positions: int = II("task.tokens_per_sample") head_layers: int = 1 transformer: TransformerConfig = TransformerConfig() load_checkpoint_heads: bool = field( default=False, metadata={"help": "(re-)register and load heads when loading checkpoints"}, ) loss_beta: float = field( default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"} ) loss_scale: Optional[float] = field( default=None, metadata={ "help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)" }, ) average_top_k_layers: int = field( default=8, metadata={"help": "how many layers to average"} ) layer_norm_target_layer: bool = False instance_norm_target_layer: bool = False batch_norm_target_layer: bool = False instance_norm_targets: bool = False layer_norm_targets: bool = False ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"}) ema_end_decay: float = field( default=0.9999, metadata={"help": "final ema decay rate"} ) # when to finish annealing ema decay rate ema_anneal_end_step: int = II("optimization.max_update") ema_transformer_layers_only: bool = field( default=True, metadata={"help": "whether to momentum update only the transformer layers"}, ) def get_annealed_rate(start, end, curr_step, total_steps): r = end - start pct_remaining = 1 - curr_step / total_steps return end - r * pct_remaining @register_model("data2vec_text", dataclass=Data2VecTextConfig) class Data2VecTextModel(FairseqEncoderModel): def __init__(self, cfg: Data2VecTextConfig, encoder): super().__init__(encoder) self.cfg = cfg # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() @classmethod def build_model(cls, cfg, task): """Build a new model instance.""" encoder = Data2VecTextEncoder(cfg, task.source_dictionary, task.cfg.data) return cls(cfg, encoder) def forward( self, src_tokens, target_tokens=None, features_only=False, return_all_hiddens=False, classification_head_name=None, **kwargs, ): if classification_head_name is not None: features_only = True res = self.encoder( src_tokens, target_tokens, features_only, return_all_hiddens, **kwargs ) if isinstance(res, tuple): x, extra = res else: return res if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output[0].float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = RobertaClassificationHead( input_dim=self.cfg.transformer.encoder.embed_dim, inner_dim=inner_dim or self.cfg.transformer.encoder.embed_dim, num_classes=num_classes, activation_fn="tanh", pooler_dropout=0, ) @property def supported_targets(self): return {"self"} def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # rename decoder -> encoder before upgrading children modules for k in list(state_dict.keys()): if k.startswith(prefix + "decoder"): new_k = prefix + "encoder" + k[len(prefix + "decoder") :] state_dict[new_k] = state_dict[k] del state_dict[k] # rename emb_layer_norm -> layernorm_embedding for k in list(state_dict.keys()): if ".emb_layer_norm." in k: new_k = k.replace(".emb_layer_norm.", ".layernorm_embedding.") state_dict[new_k] = state_dict[k] del state_dict[k] if self.encoder.regression_head is not None: if ".lm_head." in k: new_k = k.replace(".lm_head.", ".regression_head.") state_dict[new_k] = state_dict[k] del state_dict[k] else: if ".regression_head." in k: del state_dict[k] # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") or self.classification_heads is None else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if self.cfg.load_checkpoint_heads: if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if ( hasattr(self, "classification_heads") and self.classification_heads is not None and len(self.classification_heads) > 0 ): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v for k in list(state_dict.keys()): if k.startswith(prefix + "encoder.lm_head.") or k.startswith( prefix + "encoder.emb_head." ): del state_dict[k] self.encoder.lm_head = None if self.encoder.target_model is None: for k in list(state_dict.keys()): if k.startswith(prefix + "encoder.target_model."): del state_dict[k] if (self.encoder.ema is None) and (prefix + "encoder._ema" in state_dict): del state_dict[prefix + "encoder._ema"] def remove_pretraining_modules(self, last_layer=None): self.encoder.lm_head = None self.encoder.regression_head = None self.encoder.ema = None self.classification_heads = None if last_layer is not None: self.encoder.sentence_encoder.layers = nn.ModuleList( l for i, l in enumerate(self.encoder.sentence_encoder.layers) if i <= last_layer ) self.encoder.sentence_encoder.layer_norm = None class Data2VecTextEncoder(FairseqEncoder): def __init__(self, cfg: Data2VecTextConfig, dictionary, task_data): super().__init__(dictionary) self.cfg = cfg embed_tokens = self.build_embedding( len(dictionary), cfg.transformer.encoder.embed_dim, dictionary.pad() ) self.sentence_encoder = self.build_encoder(cfg, dictionary, embed_tokens) self.mask_idx = dictionary.index("") assert self.mask_idx != dictionary.unk(), dictionary.symbols self.ema = None self.average_top_k_layers = cfg.average_top_k_layers self.loss_scale = cfg.loss_scale assert self.cfg.head_layers >= 1 embed_dim = cfg.transformer.encoder.embed_dim curr_dim = embed_dim projs = [] for i in range(self.cfg.head_layers - 1): next_dim = embed_dim * 2 if i == 0 else curr_dim projs.append(nn.Linear(curr_dim, next_dim)) projs.append(nn.GELU()) curr_dim = next_dim projs.append(nn.Linear(curr_dim, embed_dim)) self.regression_head = nn.Sequential(*projs) self.num_updates = 0 def build_embedding(self, vocab_size, embedding_dim, padding_idx): return nn.Embedding(vocab_size, embedding_dim, padding_idx) def build_encoder(self, cfg, dictionary, embed_tokens): encoder = TransformerEncoder(cfg.transformer, dictionary, embed_tokens, return_fc=True) encoder.apply(init_bert_params) return encoder def build_lm_head(self, embed_dim, output_dim, activation_fn, weight): return RobertaLMHead(embed_dim, output_dim, activation_fn, weight) def make_ema_teacher(self): ema_config = EMAModuleConfig( ema_decay=self.cfg.ema_decay, ema_fp32=True, ) skip_keys = set() if self.cfg.ema_transformer_layers_only: for k, _ in self.sentence_encoder.embed_positions.named_parameters(): skip_keys.add(f"embed_tokens.{k}") for k, _ in self.sentence_encoder.embed_positions.named_parameters(): skip_keys.add(f"embed_positions.{k}") if self.sentence_encoder.layernorm_embedding is not None: for ( k, _, ) in self.sentence_encoder.layernorm_embedding.named_parameters(): skip_keys.add(f"layernorm_embedding.{k}") if self.sentence_encoder.layer_norm is not None: for k, _ in self.sentence_encoder.layer_norm.named_parameters(): skip_keys.add(f"layernorm_embedding.{k}") self.ema = EMAModule( self.sentence_encoder, ema_config, skip_keys=skip_keys, ) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) if self.ema is None and self.regression_head is not None: logger.info(f"making ema teacher") self.make_ema_teacher() elif self.training and self.ema is not None: if self.cfg.ema_decay != self.cfg.ema_end_decay: if num_updates >= self.cfg.ema_anneal_end_step: decay = self.cfg.ema_end_decay else: decay = get_annealed_rate( self.cfg.ema_decay, self.cfg.ema_end_decay, num_updates, self.cfg.ema_anneal_end_step, ) self.ema.set_decay(decay) if self.ema.get_decay() < 1: self.ema.step(self.sentence_encoder) def state_dict(self, destination=None, prefix="", keep_vars=False): state = super().state_dict(destination, prefix, keep_vars) if self.ema is not None: state[prefix + "_ema"] = self.ema.fp32_params return state def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs): if self.ema is not None: k = prefix + "_ema" assert k in state_dict self.ema.restore(state_dict[k], True) del state_dict[k] return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) def forward( self, src_tokens, target_tokens=None, features_only=False, return_all_hiddens=False, masked_tokens=None, **unused, ): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. Note that the hidden states have shape `(src_len, batch, vocab)`. """ x, extra = self.extract_features( src_tokens, return_all_hiddens=return_all_hiddens ) if features_only: return x, extra assert target_tokens is not None with torch.no_grad(): # use EMA parameter as the teacher self.ema.model.eval() encoder_out = self.ema.model( target_tokens, return_all_hiddens=True, ) y = encoder_out["fc_results"] y = y[-self.average_top_k_layers :] permuted = False if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer: y = [tl.permute(1, 2, 0) for tl in y] # TBC -> BCT permuted = True if self.cfg.batch_norm_target_layer: y = [ F.batch_norm( tl.float(), running_mean=None, running_var=None, training=True ) for tl in y ] if self.cfg.instance_norm_target_layer: y = [F.instance_norm(tl.float()) for tl in y] if permuted: y = [tl.transpose(1, 2) for tl in y] # BCT -> BTC if self.cfg.layer_norm_target_layer: y = [F.layer_norm(tl.float(), tl.shape[-1:]) for tl in y] y = sum(y) / len(y) if not permuted: y = y.transpose(0, 1) if self.cfg.layer_norm_targets: y = F.layer_norm(y.float(), y.shape[-1:]) if self.cfg.instance_norm_targets: y = F.instance_norm(y.transpose(1, 2)).transpose(1, 2) masked_indices = src_tokens.eq(self.mask_idx) x = x[masked_indices] y = y[masked_indices] x = self.regression_head(x) sz = x.size(-1) if self.cfg.loss_beta == 0: loss = F.mse_loss(x.float(), y.float(), reduction="none").sum(dim=-1) else: loss = F.smooth_l1_loss( x.float(), y.float(), reduction="none", beta=self.cfg.loss_beta ).sum(dim=-1) result = { "losses": { "main": loss.sum() / math.sqrt(sz) if self.loss_scale <= 0 else loss.sum() * self.loss_scale, }, "sample_size": loss.numel(), } # logging other values other_logs = { "ema_decay": self.ema.get_decay() * 1000 } result["logs"] = other_logs return result def extract_features(self, src_tokens, return_all_hiddens=False, **kwargs): encoder_out = self.sentence_encoder( src_tokens, return_all_hiddens=return_all_hiddens, token_embeddings=kwargs.get("token_embeddings", None), ) # T x B x C -> B x T x C features = encoder_out["encoder_out"][0].transpose(0, 1) inner_states = encoder_out["encoder_states"] if return_all_hiddens else None return features, { "inner_states": inner_states, "encoder_embedding": encoder_out["encoder_embedding"][0], } def output_layer(self, features, masked_tokens=None, **unused): return self.lm_head(features, masked_tokens) def max_positions(self): """Maximum output length supported by the encoder.""" return self.cfg.max_positions