from pathlib import Path import os import argparse import random import numpy as np from sklearn.utils import shuffle if __name__ == "__main__": """ this is a standalone script to process a km file specifically, to dedup or remove tokens that repeat less than k times in a row """ parser = argparse.ArgumentParser(description="") parser.add_argument("km", type=str, help="path to km file") parser.add_argument("--destdir", required=True, type=str) parser.add_argument("--valid-percent", type=float, default=0.05, help="percent to allocate to validation set") parser.add_argument("--test-percent", type=float, default=0.05, help="percent to allocate to test set") parser.add_argument("-sh", "--shuffle", action="store_true", help="path to km file") parser.add_argument("--seed", type=int, default=42, help="") args = parser.parse_args() np.random.seed(args.seed) random.seed(args.seed) os.makedirs(args.destdir, exist_ok=True) km = open(args.km, "r").readlines() if args.shuffle: km = shuffle(km) print(f"shuffled") N = len(km) N_tt = int(N * args.test_percent) N_cv = int(N * args.valid_percent) N_tr = N - N_tt - N_cv train_km = km[:N_tr] valid_km = km[N_tr:N_tr + N_cv] test_km = km[N_tr + N_cv:] dir = Path(args.destdir) open(dir / f"train.km", "w").writelines(train_km) open(dir / f"valid.km", "w").writelines(valid_km) open(dir / f"test.km", "w").writelines(test_km) print(f"train: {len(train_km)}") print(f"valid: {len(valid_km)}") print(f"test: {len(test_km)}") print("done")