#!/bin/bash FAIRSEQ= # Setup your fairseq directory config_dir=${FAIRSEQ}/examples/mr_hubert/config config_name=mr_hubert_base_librispeech # Prepared Data Directory data_dir=librispeech # -- data_dir # -- test.tsv # -- test.ltr # -- dict.ltr.txt exp_dir=exp # Target experiments directory (where you have your pre-trained model with checkpoint_best.pt) ratios="[1, 2]" # Default label rate ratios _opts= # If use slurm, uncomment this line and modify the job submission at # _opts="${_opts} hydra/launcher=submitit_slurm +hydra.launcher.partition=${your_slurm_partition} +run=submitit_reg" # If want to set additional experiment tag, uncomment this line # _opts="${_opts} hydra.sweep.subdir=${your_experiment_tag}" # If use un-normalized audio, uncomment this line # _opts="${_opts} task.normalize=false" PYTHONPATH=${FAIRSEQ} python examples/speech_recognition/new/infer.py \ --config-dir ${config_dir} \ --config-name infer_multires \ ${_opts} \ task.data=${data_dir} \ task.label_rate_ratios='${ratios}' \ common_eval.results_path=${exp_dir} \ common_eval.path=${exp_dir}/checkpoint_best.pt \ dataset.max_tokens=2000000 \ dataset.gen_subset=test \ dataset.skip_invalid_size_inputs_valid_test=true