|
|
|
|
|
import fasttext |
|
from tqdm import tqdm |
|
import argparse |
|
import os |
|
import math |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--txt", type=str) |
|
parser.add_argument("--dst", type=str) |
|
parser.add_argument("--model", type=str) |
|
parser.add_argument('--lid', type=str) |
|
args = parser.parse_args() |
|
|
|
mapping = {"arb":"ara", "azj":"aze", "pes":"fas", "fuv":"ful", "lvs":"lav", "khk":"mon", "zsm":"zlm", "gaz":"orm", "pbt":"pus", "uzn":"uzb", "zho":"cmn"} |
|
|
|
def fix_code(x): |
|
code = x.split("_")[-2] |
|
if code in mapping: |
|
code = mapping[code] |
|
return code |
|
|
|
if __name__ == "__main__": |
|
if not os.path.exists(args.dst): |
|
os.makedirs(args.dst) |
|
|
|
pretrained_lang_model = args.model |
|
model = fasttext.load_model(pretrained_lang_model) |
|
|
|
txts = [x.strip() for x in open(args.txt, "r").readlines()] |
|
lids = [x.strip() for x in open(args.lid, "r").readlines()] |
|
assert len(txts) == len(lids) |
|
|
|
with open(args.dst + "/wlid_score", "w") as f: |
|
for t,l in tqdm(zip(txts, lids)): |
|
predictions = model.predict(t, k=218) |
|
predictions = [(fix_code(x), y) for x, y in zip(predictions[0], predictions[1])] |
|
|
|
try: |
|
pred_langs = [x[0] for x in predictions] |
|
idx = pred_langs.index(l) |
|
score = math.log(predictions[idx][-1]) |
|
except: |
|
score = -1000 |
|
f.write(str(score) + "\n") |