PyTorch
ssl-aasist
custom_code
ash56's picture
Add files using upload-large-folder tool
9742bb8 verified
raw
history blame
2.06 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from tqdm import tqdm
import argparse
import os
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--txt", type=str)
parser.add_argument("--dst", type=str)
parser.add_argument("--gpu", type=int, default=1)
args = parser.parse_args()
if __name__ == "__main__":
if not os.path.exists(args.dst):
os.makedirs(args.dst)
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf')
base_model.resize_token_embeddings(260164)
tokenizer = AutoTokenizer.from_pretrained('MaLA-LM/mala-500')
if args.gpu == 1:
model = PeftModel.from_pretrained(base_model, 'MaLA-LM/mala-500').to("cuda")
else:
model = PeftModel.from_pretrained(base_model, 'MaLA-LM/mala-500')
model.eval()
txts = [x.strip() for x in open(args.txt, "r").readlines()]
with open(args.dst + "/lm_score", "w", buffering=1) as f:
for t in tqdm(txts):
input_tokens = tokenizer("", add_special_tokens=True, return_tensors='pt').input_ids
if len(t) > 0:
output_tokens = tokenizer(t, add_special_tokens=False, return_tensors='pt').input_ids
tokens = torch.cat([input_tokens, output_tokens], dim=1)
length = output_tokens.shape[-1]
else:
tokens = input_tokens
length = 0
if args.gpu == 1:
tokens = tokens.to("cuda")
with torch.no_grad():
outputs = model(tokens)
logits = outputs.logits
log_sum = 0
for i in range(tokens.shape[-1] - 1):
past_tok, current_tok = i, i + 1
token_logit = logits[0, past_tok, :]
token_log_probs = torch.nn.functional.log_softmax(token_logit, dim=-1)
log_token_prob = token_log_probs[tokens[0, current_tok]].item()
log_sum += log_token_prob
f.write(str(log_sum) + "\n")