PyTorch
ssl-aasist
custom_code
ash56's picture
Add files using upload-large-folder tool
6789f6f verified
raw
history blame
25.7 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# The code in this file is adapted from the BeiT implementation which can be found here:
# https://github.com/microsoft/unilm/tree/master/beit
import logging
import math
import numpy as np
import random
from dataclasses import dataclass, field
from typing import Optional
from omegaconf import II
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from fairseq.modules import EMAModule, EMAModuleConfig
from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
logger = logging.getLogger(__name__)
@dataclass
class Data2VecVisionConfig(FairseqDataclass):
layer_scale_init_value: float = field(
default=1e-4, metadata={"help": "rescale layer outputs, 0 to disable"}
)
num_mask_patches: int = field(
default=75,
metadata={"help": "number of the visual tokens/patches need be masked"},
)
min_mask_patches_per_block: int = 16
max_mask_patches_per_block: int = 196
image_size: int = 224
patch_size: int = 16
in_channels: int = 3
shared_rel_pos_bias: bool = True
drop_path: float = 0.1
attention_dropout: float = 0.0
depth: int = 12
embed_dim: int = 768
num_heads: int = 12
mlp_ratio: int = 4
loss_beta: float = field(
default=0, metadata={"help": "beta for smooth l1 loss. 0 means use l2 loss"}
)
loss_scale: Optional[float] = field(
default=None,
metadata={
"help": "scale the reconstruction loss by this constant. if None then scales by 1/sqrt(dim)"
},
)
average_top_k_layers: int = field(
default=8, metadata={"help": "how many layers to average"}
)
end_of_block_targets: bool = True
layer_norm_target_layer: bool = False
instance_norm_target_layer: bool = False
batch_norm_target_layer: bool = False
instance_norm_targets: bool = False
layer_norm_targets: bool = False
ema_decay: float = field(default=0.999, metadata={"help": "initial ema decay rate"})
ema_end_decay: float = field(
default=0.9999, metadata={"help": "final ema decay rate"}
)
# when to finish annealing ema decay rate
ema_anneal_end_step: int = II("optimization.max_update")
ema_transformer_only: bool = field(
default=True,
metadata={"help": "whether to momentum update only the transformer layers"},
)
def get_annealed_rate(start, end, curr_step, total_steps):
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
@register_model("data2vec_vision", dataclass=Data2VecVisionConfig)
class Data2VecVisionModel(BaseFairseqModel):
def __init__(self, cfg: Data2VecVisionConfig):
super().__init__()
self.cfg = cfg
self.ema = None
self.average_top_k_layers = cfg.average_top_k_layers
self.loss_beta = cfg.loss_beta
self.loss_scale = (
cfg.loss_scale
if cfg.loss_scale is not None
else 1 / math.sqrt(cfg.embed_dim)
)
self.patch_embed = PatchEmbed(
img_size=cfg.image_size,
patch_size=cfg.patch_size,
in_chans=cfg.in_channels,
embed_dim=cfg.embed_dim,
)
patch_size = self.patch_embed.patch_size
self.window_size = (
cfg.image_size // patch_size[0],
cfg.image_size // patch_size[1],
)
self.cls_emb = nn.Parameter(torch.FloatTensor(1, 1, cfg.embed_dim))
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, cfg.embed_dim))
nn.init.trunc_normal_(self.cls_emb, 0.02)
nn.init.trunc_normal_(self.mask_emb, 0.02)
self.encoder = TransformerEncoder(cfg, self.patch_embed.patch_shape)
self.final_proj = nn.Linear(cfg.embed_dim, cfg.embed_dim)
self.num_updates = 0
def make_ema_teacher(self):
ema_config = EMAModuleConfig(
ema_decay=self.cfg.ema_decay,
ema_fp32=True,
)
self.ema = EMAModule(
self.encoder if self.cfg.ema_transformer_only else self,
ema_config,
)
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
if self.ema is None and self.final_proj is not None:
logger.info(f"making ema teacher")
self.make_ema_teacher()
elif self.training and self.ema is not None:
if self.cfg.ema_decay != self.cfg.ema_end_decay:
if num_updates >= self.cfg.ema_anneal_end_step:
decay = self.cfg.ema_end_decay
else:
decay = get_annealed_rate(
self.cfg.ema_decay,
self.cfg.ema_end_decay,
num_updates,
self.cfg.ema_anneal_end_step,
)
self.ema.set_decay(decay)
if self.ema.get_decay() < 1:
self.ema.step(self.encoder if self.cfg.ema_transformer_only else self)
self.num_updates = num_updates
def state_dict(self, destination=None, prefix="", keep_vars=False):
state = super().state_dict(destination, prefix, keep_vars)
if self.ema is not None:
state[prefix + "_ema"] = self.ema.fp32_params
return state
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
if self.ema is not None:
k = prefix + "_ema"
assert k in state_dict
self.ema.restore(state_dict[k], True)
del state_dict[k]
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
@classmethod
def build_model(cls, cfg: Data2VecVisionConfig, task=None):
"""Build a new model instance."""
return cls(cfg)
def make_mask(self, bsz, num_masks, min_masks, max_masks):
height, width = self.window_size
masks = np.zeros(shape=(bsz, height, width), dtype=np.int)
for i in range(bsz):
mask = masks[i]
mask_count = 0
min_aspect = 0.3
max_aspect = 1 / min_aspect
log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
def _mask(mask, max_mask_patches):
delta = 0
for attempt in range(10):
target_area = random.uniform(min_masks, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < width and h < height:
top = random.randint(0, height - h)
left = random.randint(0, width - w)
num_masked = mask[top : top + h, left : left + w].sum()
# Overlap
if 0 < h * w - num_masked <= max_mask_patches:
for i in range(top, top + h):
for j in range(left, left + w):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
while mask_count < num_masks:
max_mask_patches = min(num_masks - mask_count, max_masks)
delta = _mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return torch.from_numpy(masks)
def forward(
self,
img,
mask: bool = True,
layer_results: bool = False,
):
x = self.patch_embed(img)
batch_size, seq_len, _ = x.size()
if mask:
mask_indices = self.make_mask(
img.size(0),
self.cfg.num_mask_patches,
self.cfg.min_mask_patches_per_block,
self.cfg.max_mask_patches_per_block,
)
bool_mask = mask_indices.view(mask_indices.size(0), -1).bool()
else:
mask_indices = bool_mask = None
cls_tokens = self.cls_emb.expand(batch_size, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.ema is not None:
with torch.no_grad():
self.ema.model.eval()
if self.cfg.ema_transformer_only:
y = self.ema.model(
x,
layer_results="end" if self.cfg.end_of_block_targets else "fc",
)
else:
y = self.ema.model(
img,
mask=False,
layer_results=True,
)
y = y[-self.cfg.average_top_k_layers :]
permuted = False
if self.cfg.instance_norm_target_layer or self.cfg.batch_norm_target_layer:
y = [tl.transpose(1, 2) for tl in y] # BTC -> BCT
permuted = True
if self.cfg.batch_norm_target_layer:
y = [
F.batch_norm(
tl.float(), running_mean=None, running_var=None, training=True
)
for tl in y
]
if self.cfg.instance_norm_target_layer:
y = [F.instance_norm(tl.float()) for tl in y]
if permuted:
y = [tl.transpose(1, 2) for tl in y] # BCT -> BTC
if self.cfg.layer_norm_target_layer:
y = [F.layer_norm(tl.float(), tl.shape[-1:]) for tl in y]
y = sum(y) / len(y)
if self.cfg.layer_norm_targets:
y = F.layer_norm(y.float(), y.shape[-1:])
if self.cfg.instance_norm_targets:
y = F.instance_norm(y.float().transpose(1, 2)).transpose(1, 2)
y = y[bool_mask].float()
if mask_indices is not None:
mask_token = self.mask_emb.expand(batch_size, seq_len, -1)
w = mask_indices.view(mask_indices.size(0), -1, 1).type_as(mask_token)
x[:, 1:] = x[:, 1:] * (1 - w) + mask_token * w
if layer_results:
enc_layer_results = "end" if self.cfg.end_of_block_targets else "fc"
else:
enc_layer_results = None
x = self.encoder(x, layer_results=enc_layer_results)
if layer_results or mask_indices is None:
return x
x = x[bool_mask].float()
if self.loss_beta == 0:
loss = F.mse_loss(x, y, reduction="none").sum(dim=-1)
else:
loss = F.smooth_l1_loss(x, y, reduction="none", beta=self.loss_beta).sum(
dim=-1
)
if self.loss_scale > 0:
loss = loss * self.loss_scale
result = {
"losses": {"regression": loss.sum()},
"sample_size": loss.numel(),
"target_var": self.compute_var(y),
"pred_var": self.compute_var(x),
"ema_decay": self.ema.get_decay() * 1000,
}
return result
@staticmethod
def compute_var(y):
y = y.view(-1, y.size(-1))
if dist.is_initialized():
zc = torch.tensor(y.size(0)).cuda()
zs = y.sum(dim=0)
zss = (y ** 2).sum(dim=0)
dist.all_reduce(zc)
dist.all_reduce(zs)
dist.all_reduce(zss)
var = zss / (zc - 1) - (zs ** 2) / (zc * (zc - 1))
return torch.sqrt(var + 1e-6).mean()
else:
return torch.sqrt(y.var(dim=0) + 1e-6).mean()
def remove_pretraining_modules(self, last_layer=None):
self.final_proj = None
self.ema = None
self.encoder.norm = nn.Identity()
self.mask_emb = None
if last_layer is not None:
self.encoder.layers = nn.ModuleList(
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
)
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
if isinstance(img_size, int):
img_size = img_size, img_size
if isinstance(patch_size, int):
patch_size = patch_size, patch_size
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.conv = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x):
# BCHW -> BTC
x = self.conv(x).flatten(2).transpose(1, 2)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2,
dtype=relative_coords.dtype,
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
assert 1==2
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
print("attn.size() :", attn.size())
print("rel_pos_bias.size() :", rel_pos_bias.size())
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
print("self.window_size :", self.window_size)
print("self.num_relative_distance :", self.num_relative_distance)
print("self.relative_position_index :", self.relative_position_index.size(), self.relative_position_index)
print("relative_position_bias.size(), relative_position_bias :",relative_position_bias.size(), relative_position_bias)
print("self.relative_position_bias_table.size(), self.relative_position_bias_table :",self.relative_position_bias_table.size(), self.relative_position_bias_table)
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
if self.drop_prob == 0.0 or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor
return output
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
window_size=None,
):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_hidden_dim),
nn.GELU(),
nn.Linear(mlp_hidden_dim, dim),
nn.Dropout(drop),
)
if init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
print("inside block :", x.size())
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
fc_feature = self.drop_path(self.mlp(self.norm2(x)))
x = x + fc_feature
else:
x = x + self.drop_path(
self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
)
fc_feature = self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
x = x + fc_feature
return x, fc_feature
class TransformerEncoder(nn.Module):
def __init__(self, cfg: Data2VecVisionConfig, patch_shape):
super().__init__()
self.rel_pos_bias = None
if cfg.shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=patch_shape, num_heads=cfg.num_heads
)
dpr = [
x.item() for x in torch.linspace(0, cfg.drop_path, cfg.depth)
] # stochastic depth decay rule
print("TransformerEncoder > patch_shape :", patch_shape)
self.blocks = nn.ModuleList(
Block(
dim=cfg.embed_dim,
num_heads=cfg.num_heads,
attn_drop=cfg.attention_dropout,
drop_path=dpr[i],
init_values=cfg.layer_scale_init_value,
window_size=patch_shape if not cfg.shared_rel_pos_bias else None,
)
for i in range(cfg.depth)
)
self.norm = nn.LayerNorm(cfg.embed_dim)
self.apply(self.init_weights)
self.fix_init_weight()
def init_weights(self, m):
std = 0.02
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=std)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.trunc_normal_(m.weight, std=std)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp[2].weight.data, layer_id + 1)
def extract_features(self, x, layer_results):
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
z = []
for i, blk in enumerate(self.blocks):
x, fc_feature = blk(x, rel_pos_bias=rel_pos_bias)
if layer_results == "end":
z.append(x)
elif layer_results == "fc":
z.append(fc_feature)
return z if layer_results else self.norm(x)
def forward(self, x, layer_results=None):
x = self.extract_features(x, layer_results=layer_results)
if layer_results:
return [z[:, 1:] for z in x]
x = x[:, 1:]
return x