PyTorch
ssl-aasist
custom_code
File size: 5,548 Bytes
9043f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import numpy as np
import unittest
from fairseq.modules import (
    ESPNETMultiHeadedAttention,
    RelPositionMultiHeadedAttention,
    RotaryPositionMultiHeadedAttention,
)

torch.use_deterministic_algorithms(True)


class TestESPNETMultiHeadedAttention(unittest.TestCase):
    def setUp(self) -> None:
        self.T = 3
        self.B = 1
        self.C = 2
        torch.manual_seed(0)
        self.sample = torch.randn(self.T, self.B, self.C)  # TBC
        self.sample_scores = torch.randn(self.B, 1, self.T, self.T)
        self.MHA = ESPNETMultiHeadedAttention(self.C, 1, dropout=0)

    def test_forward(self):
        expected_scores = torch.tensor(
            [[[0.1713, -0.3776]], [[0.2263, -0.4486]], [[0.2243, -0.4538]]]
        )
        scores, _ = self.MHA(self.sample, self.sample, self.sample)
        self.assertTrue(
            np.allclose(
                expected_scores.cpu().detach().numpy(),
                scores.cpu().detach().numpy(),
                atol=1e-4,
            )
        )

    def test_forward_qkv(self):
        expected_query = torch.tensor(
            [[[[-1.0235, 0.0409], [0.4008, 1.3077], [0.5396, 2.0698]]]]
        )
        expected_key = torch.tensor(
            [[[[0.5053, -0.4965], [-0.3730, -0.9473], [-0.7019, -0.1935]]]]
        )
        expected_val = torch.tensor(
            [[[[-0.9940, 0.5403], [0.5924, -0.7619], [0.7504, -1.0892]]]]
        )
        sample_t = self.sample.transpose(0, 1)
        query, key, val = self.MHA.forward_qkv(sample_t, sample_t, sample_t)
        self.assertTrue(
            np.allclose(
                expected_query.cpu().detach().numpy(),
                query.cpu().detach().numpy(),
                atol=1e-4,
            )
        )
        self.assertTrue(
            np.allclose(
                expected_key.cpu().detach().numpy(),
                key.cpu().detach().numpy(),
                atol=1e-4,
            )
        )
        self.assertTrue(
            np.allclose(
                expected_val.cpu().detach().numpy(),
                val.cpu().detach().numpy(),
                atol=1e-4,
            )
        )

    def test_forward_attention(self):
        expected_scores = torch.tensor(
            [[[0.1627, -0.6249], [-0.2547, -0.6487], [-0.0711, -0.8545]]]
        )
        scores = self.MHA.forward_attention(
            self.sample.transpose(0, 1).view(self.B, 1, self.T, self.C),
            self.sample_scores,
            mask=None,
        )
        self.assertTrue(
            np.allclose(
                expected_scores.cpu().detach().numpy(),
                scores.cpu().detach().numpy(),
                atol=1e-4,
            )
        )


class TestRelPositionMultiHeadedAttention(unittest.TestCase):
    def setUp(self) -> None:
        self.T = 3
        self.B = 1
        self.C = 2
        torch.manual_seed(0)
        self.sample = torch.randn(self.T, self.B, self.C)  # TBC
        self.sample_x = torch.randn(self.B, 1, self.T, self.T * 2 - 1)
        self.sample_pos = torch.randn(self.B, self.T * 2 - 1, self.C)
        self.MHA = RelPositionMultiHeadedAttention(self.C, 1, dropout=0)

    def test_rel_shift(self):
        expected_x = torch.tensor(
            [
                [
                    [
                        [-0.7193, -0.4033, -0.5966],
                        [-0.8567, 1.1006, -1.0712],
                        [-0.5663, 0.3731, -0.8920],
                    ]
                ]
            ]
        )
        x = self.MHA.rel_shift(self.sample_x)
        self.assertTrue(
            np.allclose(
                expected_x.cpu().detach().numpy(),
                x.cpu().detach().numpy(),
                atol=1e-4,
            )
        )

    def test_forward(self):
        expected_scores = torch.tensor(
            [
                [[-0.9609, -0.5020]],
                [[-0.9308, -0.4890]],
                [[-0.9473, -0.4948]],
                [[-0.9609, -0.5020]],
                [[-0.9308, -0.4890]],
                [[-0.9473, -0.4948]],
                [[-0.9609, -0.5020]],
                [[-0.9308, -0.4890]],
                [[-0.9473, -0.4948]],
                [[-0.9609, -0.5020]],
                [[-0.9308, -0.4890]],
                [[-0.9473, -0.4948]],
                [[-0.9609, -0.5020]],
                [[-0.9308, -0.4890]],
                [[-0.9473, -0.4948]],
            ]
        )
        scores, _ = self.MHA(self.sample, self.sample, self.sample, self.sample_pos)
        self.assertTrue(
            np.allclose(
                expected_scores.cpu().detach().numpy(),
                scores.cpu().detach().numpy(),
                atol=1e-4,
            )
        )


class TestRotaryPositionMultiHeadedAttention(unittest.TestCase):
    def setUp(self) -> None:
        self.T = 3
        self.B = 1
        self.C = 2
        torch.manual_seed(0)
        self.sample = torch.randn(self.T, self.B, self.C)  # TBC
        self.MHA = RotaryPositionMultiHeadedAttention(
            self.C, 1, dropout=0, precision=None
        )

    def test_forward(self):
        expected_scores = torch.tensor(
            [[[-0.3220, -0.4726]], [[-1.2813, -0.0979]], [[-0.3138, -0.4758]]]
        )
        scores, _ = self.MHA(self.sample, self.sample, self.sample)
        self.assertTrue(
            np.allclose(
                expected_scores.cpu().detach().numpy(),
                scores.cpu().detach().numpy(),
                atol=1e-4,
            )
        )


if __name__ == "__main__":
    unittest.main()