PyTorch
ssl-aasist
custom_code
File size: 5,449 Bytes
9043f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env fbpython
# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.

import contextlib
import logging
import unittest
from io import StringIO
from unittest.mock import MagicMock, patch

import torch
from fairseq import checkpoint_utils, data
from omegaconf import OmegaConf


def mock_trainer(epoch, num_updates, iterations_in_epoch):
    trainer = MagicMock()
    trainer.load_checkpoint.return_value = {
        "train_iterator": {
            "epoch": epoch,
            "iterations_in_epoch": iterations_in_epoch,
            "shuffle": False,
        },
        "FakeTask": checkpoint_dict()["FakeTask"],
    }
    trainer.get_num_updates.return_value = num_updates
    trainer.task.__class__.__name__ = "FakeTask"
    trainer.task.get_checkpoint_dict.return_value = checkpoint_dict()
    trainer.task.set_checkpoint_dict = MagicMock()

    return trainer


def checkpoint_dict():
    return {
        "FakeTask": {
            "observer_stats": {
                (
                    4,
                    16,
                    "MovingAveragePerChannelMinMax",
                    "MovingAveragePerChannelMinMax",
                ): {"mod1": 1, "mod2": 2, "mod3": 3}
            }
        }
    }


def mock_dict():
    d = MagicMock()
    d.pad.return_value = 1
    d.eos.return_value = 2
    d.unk.return_value = 3
    return d


def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch):
    tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1)
    tokens_ds = data.TokenBlockDataset(
        tokens,
        sizes=[tokens.size(-1)],
        block_size=1,
        pad=0,
        eos=1,
        include_targets=False,
    )
    trainer = mock_trainer(epoch, num_updates, iterations_in_epoch)
    dataset = data.LanguagePairDataset(
        tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False
    )
    epoch_itr = data.EpochBatchIterator(
        dataset=dataset,
        collate_fn=dataset.collater,
        batch_sampler=[[i] for i in range(epoch_size)],
    )
    return trainer, epoch_itr


def get_mock_cfg(finetune_from_model):
    cfg_mock = OmegaConf.create(
        {
            "checkpoint": {
                "save_dir": None,
                "optimizer_overrides": "{}",
                "reset_dataloader": False,
                "reset_meters": False,
                "reset_optimizer": False,
                "reset_lr_scheduler": False,
                "finetune_from_model": finetune_from_model,
                "model_parallel_size": 1,
                "restore_file": "checkpoint_last.pt",
                "no_save": False,
                "save_interval_updates": 0,
                "no_last_checkpoints": False,
                "keep_interval_updates": 0,
                "keep_last_epochs": 0,
                "keep_best_checkpoints": 0,
            },
            "common": {
                "model_parallel_size": 1,
            },
        }
    )
    return cfg_mock


class TestCheckpointsForTaskLevelAttributes(unittest.TestCase):
    def setUp(self) -> None:
        self.cfg_mock = get_mock_cfg(None)
        self.patches = {
            "os.makedirs": MagicMock(),
            "os.path.join": MagicMock(),
            "os.path.isfile": MagicMock(return_value=True),
            "os.path.isabs": MagicMock(return_value=False),
            "fairseq.file_io.PathManager.exists": MagicMock(return_value=False),
        }
        self.applied_patches = [patch(p, d) for p, d in self.patches.items()]
        [p.start() for p in self.applied_patches]
        logging.disable(logging.CRITICAL)

        self.trainer, self.epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50)
        self.trainer.get_train_iterator = MagicMock(return_value=self.epoch_itr)
        self.epoch_itr.next_epoch_itr(shuffle=False)

        checkpoint_utils.save_checkpoint(
            self.cfg_mock.checkpoint, self.trainer, self.epoch_itr, None
        )

    def tearDown(self):
        patch.stopall()
        logging.disable(logging.NOTSET)

    def test_verify_checkpoint(self) -> None:
        cp_dict = self.trainer.task.get_checkpoint_dict()
        self.assertTrue(len(cp_dict) == 1)
        self.assertTrue("FakeTask" in cp_dict)
        self.assertTrue("observer_stats" in cp_dict["FakeTask"])
        self.assertTrue(len(cp_dict["FakeTask"]["observer_stats"]) == 1)
        self.assertTrue(
            (
                4,
                16,
                "MovingAveragePerChannelMinMax",
                "MovingAveragePerChannelMinMax",
            )
            in cp_dict["FakeTask"]["observer_stats"]
        )
        self.assertTrue(
            cp_dict["FakeTask"]["observer_stats"][
                (
                    4,
                    16,
                    "MovingAveragePerChannelMinMax",
                    "MovingAveragePerChannelMinMax",
                )
            ]
            == {"mod1": 1, "mod2": 2, "mod3": 3}
        )

    def test_load_checkpoint(self) -> None:
        with contextlib.redirect_stdout(StringIO()):
            # Now, load checkpoint to ensure the respective logic works as expected
            _, epoch_itr = checkpoint_utils.load_checkpoint(
                self.cfg_mock.checkpoint, self.trainer
            )

            self.trainer.task.set_checkpoint_dict.assert_called_once_with(
                checkpoint_dict()["FakeTask"]
            )


if __name__ == "__main__":
    unittest.main()