PyTorch
ssl-aasist
custom_code
File size: 7,559 Bytes
9742bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
from dataclasses import dataclass
import torch
import torch.utils.cpp_extension

cuda_source = """

#include <ATen/core/TensorAccessor.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <vector>
#include <limits.h>
#include <cub/cub.cuh>
#include <iostream>

using namespace torch::indexing;

constexpr int kNumThreads = 1024;
constexpr float kNegInfinity = -std::numeric_limits<float>::infinity();
constexpr int kBlankIdx = 0;

__global__ void
falign_cuda_step_kernel(
  const torch::PackedTensorAccessor32<float, 2, torch::RestrictPtrTraits>
    emissions_a,
  const torch::PackedTensorAccessor32<int32_t, 1, torch::RestrictPtrTraits>
    target_a,
  const int T, const int L, const int N, const int R, const int t, int start,
  int end, torch::PackedTensorAccessor32<float, 2, torch::RestrictPtrTraits>
             runningAlpha_a,
  torch::PackedTensorAccessor32<int32_t, 1, torch::RestrictPtrTraits>
    backtrack_a, const bool normalize)
{
  int S = 2 * L + 1;
  
  int idx1 = (t % 2); // current time step frame for alpha
  int idx2 = ((t - 1) % 2); // previous time step frame for alpha
  
  // reset alpha and backtrack values
  for (int i = threadIdx.x; i < S; i += blockDim.x) {
      runningAlpha_a[idx1][i] = kNegInfinity;
      backtrack_a[i] = -1;
  }
  // This could potentially be removed through careful indexing inside each thread
  // for the above for loop. But this is okay for now. 
  __syncthreads();

  if (t == 0) {
    for (int i = start + threadIdx.x; i < end; i += blockDim.x) {
      int labelIdx = (i % 2 == 0) ? kBlankIdx : target_a[i / 2];
      runningAlpha_a[idx1][i] = emissions_a[0][labelIdx];
    }
    return;
  }

  using BlockReduce = cub::BlockReduce<float, kNumThreads>;
  __shared__ typename BlockReduce::TempStorage tempStorage;
  __shared__ float maxValue;

  float threadMax;

  int startloop = start;

  threadMax = kNegInfinity;

  if (start == 0 && threadIdx.x == 0) {
    runningAlpha_a[idx1][0] =
      runningAlpha_a[idx2][0] + emissions_a[t][kBlankIdx];
    threadMax = max(threadMax, runningAlpha_a[idx1][0]);

    backtrack_a[0] = 0;
    // startloop += 1; // startloop is threadlocal meaning it would only be changed for threads entering this loop (ie threadIdx == 0)
  }
  if(start == 0) {
    startloop += 1;
  }

  for (int i = startloop + threadIdx.x; i < end; i += blockDim.x) {
    float x0 = runningAlpha_a[idx2][i];
    float x1 = runningAlpha_a[idx2][i - 1];
    float x2 = kNegInfinity;

    int labelIdx = (i % 2 == 0) ? kBlankIdx : target_a[i / 2];

    if (i % 2 != 0 && i != 1 && target_a[i / 2] != target_a[i / 2 - 1]) {
      x2 = runningAlpha_a[idx2][i - 2];
    }

    float result = 0.0;
    if (x2 > x1 && x2 > x0) {
      result = x2;
      backtrack_a[i] = 2;
    } else if (x1 > x0 && x1 > x2) {
      result = x1;
      backtrack_a[i] = 1;
    } else {
      result = x0;
      backtrack_a[i] = 0;
    }

    runningAlpha_a[idx1][i] = result + emissions_a[t][labelIdx];
    threadMax = max(threadMax, runningAlpha_a[idx1][i]);
  }

  float maxResult = BlockReduce(tempStorage).Reduce(threadMax, cub::Max());
  if (threadIdx.x == 0) {
    maxValue = maxResult;
  }

  __syncthreads();
  // normalize alpha values so that they don't overflow for large T
  if(normalize) {
      for (int i = threadIdx.x; i < S; i += blockDim.x) {
        runningAlpha_a[idx1][i] -= maxValue;
      }
  }
}

std::tuple<std::vector<int>, torch::Tensor, torch::Tensor>
falign_cuda(const torch::Tensor& emissions, const torch::Tensor& target, const bool normalize=false)
{
  TORCH_CHECK(emissions.is_cuda(), "need cuda tensors");
  TORCH_CHECK(target.is_cuda(), "need cuda tensors");
  TORCH_CHECK(target.device() == emissions.device(),
              "need tensors on same cuda device");
  TORCH_CHECK(emissions.dim() == 2 && target.dim() == 1, "invalid sizes");
  TORCH_CHECK(target.sizes()[0] > 0, "target size cannot be empty");



  int T = emissions.sizes()[0]; // num frames
  int N = emissions.sizes()[1]; // alphabet size
  int L = target.sizes()[0]; // label length
  const int S = 2 * L + 1;
  
  
  auto targetCpu = target.to(torch::kCPU);
  
  
  // backtrack stores the index offset fthe best path at current position  
  // We copy the values to CPU after running every time frame.
  
  auto backtrack = torch::zeros({ S }, torch::kInt32).to(emissions.device());
  auto backtrackCpu = torch::zeros(
    { T, S }, torch::TensorOptions().dtype(torch::kInt32).device(torch::kCPU));
  TORCH_CHECK(backtrack.is_cuda(), "need cuda tensors");
  TORCH_CHECK(!backtrackCpu.is_cuda(), "need cpu tensors");
  
 

  // we store only two time frames for alphas
  // alphas for compute current timeframe can be computed only from previous time frame.
  
  auto runningAlpha =
    torch::zeros(
      { 2, S },
      torch::TensorOptions().dtype(torch::kFloat).device(emissions.device()));
  auto alphaCpu =
    torch::zeros(
      { T, S },
      torch::TensorOptions().dtype(torch::kFloat).device(torch::kCPU));
  TORCH_CHECK(runningAlpha.is_cuda(), "need cuda tensors");
  TORCH_CHECK(!alphaCpu.is_cuda(), "need cpu tensors");

  auto stream = at::cuda::getCurrentCUDAStream();

  // CUDA accessors 
  auto emissions_a = emissions.packed_accessor32<float, 2, torch::RestrictPtrTraits>();
  auto target_a = target.packed_accessor32<int32_t, 1, torch::RestrictPtrTraits>();
  auto runningAlpha_a =
    runningAlpha.packed_accessor32<float, 2, torch::RestrictPtrTraits>();
  auto backtrack_a =
    backtrack.packed_accessor32<int32_t, 1, torch::RestrictPtrTraits>();

  
  // CPU accessors 
  auto targetCpu_a = targetCpu.accessor<int32_t, 1>();
  auto backtrackCpu_a = backtrackCpu.accessor<int32_t, 2>();
  auto aphaCpu_a = alphaCpu.accessor<float, 2>();
  
  // count the number of repeats in label
  int R = 0; 
  for (int i = 1; i < L; ++i) {
    if (targetCpu_a[i] == targetCpu_a[i - 1]) {
      ++R;
    }
  }
  TORCH_CHECK(T >= (L + R), "invalid sizes 2");


  int start = (T - (L + R)) > 0 ? 0 : 1;
  int end = (S == 1) ? 1 : 2;
  for (int t = 0; t < T; ++t) {
    if (t > 0) {
      if (T - t <= L + R) {
        if ((start % 2 == 1) &&
            (targetCpu_a[start / 2] != targetCpu_a[start / 2 + 1])) {
          start = start + 1;
        }
        start = start + 1;
      }
      if (t <= L + R) {
        if ((end % 2 == 0) && (end < 2 * L) &&
            (targetCpu_a[end / 2 - 1] != targetCpu_a[end / 2])) {
          end = end + 1;
        }
        end = end + 1;
      }
    }
    falign_cuda_step_kernel<<<1, kNumThreads, 0, stream>>>(
      emissions_a, target_a, T, L, N, R, t, start, end, runningAlpha_a,
      backtrack_a, normalize);

    backtrackCpu.index_put_({ t, Slice()}, backtrack.to(torch::kCPU));
    alphaCpu.index_put_({ t, Slice()}, runningAlpha.slice(0, t % 2, t % 2 + 1).to(torch::kCPU));
  }

  int idx1 = ((T - 1) % 2);
  int ltrIdx = runningAlpha[idx1][S - 1].item<float>() >
                   runningAlpha[idx1][S - 2].item<float>()
                 ? S - 1
                 : S - 2;

  std::vector<int> path(T);
  for (int t = T - 1; t >= 0; --t) {
    path[t] = (ltrIdx % 2 == 0) ? 0 : targetCpu_a[ltrIdx / 2];
    ltrIdx -= backtrackCpu_a[t][ltrIdx];
  }

  // returning runningAlpha, backtrackCpu for debugging purposes
  return std::make_tuple(path, alphaCpu, backtrackCpu);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
  m.def("falign", &falign_cuda, "falign cuda");
}
"""
falign_ext = torch.utils.cpp_extension.load_inline("falign", cpp_sources="", cuda_sources=cuda_source, extra_cflags=['-O3'], verbose=True )