PyTorch
ssl-aasist
custom_code
File size: 1,640 Bytes
d28af7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
dataset:
  video_processor: ShardedVideoRetriVideoProcessor
  bert_name: bert-base-uncased
  meta_processor: ShardedHow2VideoRetriMetaProcessor
  train_path: data/how2/how2_s3d_train.lst
  val_path: data/how2/how2_s3d_val.lst
  vfeat_dir: data/feat/feat_how2_s3d_shard_small
  text_processor: ShardedVideoRetriTextProcessor
  tfeat_dir: data/feat/feat_how2_s3d_shard_small/raw_caption_dedup.bert-base-uncased.
  aligner: VideoRetriOverlappedAligner
  subsampling: 1
  sampled_min_len: 8
  sampled_max_len: 64
  max_video_len: 32
  max_len: 96
  lazy_vfeat_mask: true
  mfm_probability: 0.15
  mlm_probability: 0.15
  mm_prob: 0.5
  sampled_video_min_len: 3
  sampled_video_max_len: 32
  num_video_per_batch: 32
  clip_per_video: 16
fairseq:
  common:
    tensorboard_logdir: run
    log_interval: 1000
    fp16: true
  dataset:
    num_workers: 4
    batch_size: 1
  optimization:
    lr:
    - 5.0e-05
    clip_norm: 2.0
    optimizer: adam
    adam_betas: (0.9, 0.98)
    lr_scheduler: polynomial_decay
    total_num_update: 1000000
    warmup_updates: 1000
    weight_decay: 0.0
    ddp_backend: no_c10d
    max_epoch: 25
  checkpoint:
    save_dir: runs/retri/videoclip
    save_interval_updates: 1024
    keep_interval_updates: 2
    keep_last_epochs: 30
task_type: sweep_big
slurm_config: big
eval:
  save_path: runs/retri/videoclip
model:
  model_cls: MMFusionSeparate
  mm_encoder_cls: null
  video_encoder_cls: MMBertForEncoder
  text_encoder_cls: BertModel
  num_hidden_video_layers: 6
loss:
  loss_cls: MMContraLoss
task: VideoRetriTask
retri_epoch: 1
vectorpool_cls: VideoVectorPool
retriever_cls: VectorRetriever
num_cands: 64