File size: 1,785 Bytes
d28af7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
TODO (huxu): fairseq wrapper class for all dataset you defined: mostly MMDataset.
"""
from collections import OrderedDict
from torch.utils.data import Dataset
from torch.utils.data.dataloader import default_collate
from fairseq.data import FairseqDataset, data_utils
class FairseqMMDataset(FairseqDataset):
"""
A wrapper class for MMDataset for fairseq.
"""
def __init__(self, mmdataset):
if not isinstance(mmdataset, Dataset):
raise TypeError("mmdataset must be of type `torch.utils.data.dataset`.")
self.mmdataset = mmdataset
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __getitem__(self, idx):
with data_utils.numpy_seed(43211, self.epoch, idx):
return self.mmdataset[idx]
def __len__(self):
return len(self.mmdataset)
def collater(self, samples):
if hasattr(self.mmdataset, "collator"):
return self.mmdataset.collator(samples)
if len(samples) == 0:
return {}
if isinstance(samples[0], dict):
batch = OrderedDict()
for key in samples[0]:
if samples[0][key] is not None:
batch[key] = default_collate([sample[key] for sample in samples])
return batch
else:
return default_collate(samples)
def size(self, index):
"""dummy implementation: we don't use --max-tokens"""
return 1
def num_tokens(self, index):
"""dummy implementation: we don't use --max-tokens"""
return 1
|