PyTorch
ssl-aasist
custom_code
File size: 15,550 Bytes
211c22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import logging
import os
import re

import numpy as np
import torch

from examples.speech_text_joint_to_text.data.pair_denoising_dataset import (
    LanguagePairDenoisingDataset,
)
from fairseq import utils
from fairseq.data import (
    ConcatDataset,
    Dictionary,
    LanguagePairDataset,
    ResamplingDataset,
    TransformEosConcatLangPairDataset,
    TransformEosLangPairDataset,
    data_utils,
    indexed_dataset,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask

logger = logging.getLogger(__name__)


def gen_whole_word_mask(args, dictionary):
    def is_beginning_of_word(i):
        if i < dictionary.nspecial:
            # special elements are always considered beginnings
            return True
        tok = dictionary[i]
        if tok.startswith("madeupword"):
            return True

        if tok in ["<unk>", "<s>", "</s>", "<pad>"]:
            return True
        return tok.startswith("\u2581")

    if args.use_mask_whole_words:
        mask_whole_words = torch.ByteTensor(
            list(map(is_beginning_of_word, range(len(dictionary))))
        )
    else:
        # it will mask every token as word leading token, since no bpe model is loaded for phoneme tokens
        return get_whole_word_mask(args, dictionary)
    return mask_whole_words


@register_task("paired_denoising")
class PairedDenoisingTask(TranslationTask):

    LANG_TAG_TEMPLATE = "<lang:{}>"  # Tag for language (target)

    @staticmethod
    def add_args(parser):
        TranslationTask.add_args(parser)
        # bart setting
        parser.add_argument(
            "--mask",
            default=0.0,
            type=float,
            help="fraction of words/subwords that will be masked",
        )
        parser.add_argument(
            "--mask-random",
            default=0.0,
            type=float,
            help="instead of using [MASK], use random token this often",
        )
        parser.add_argument(
            "--insert",
            default=0.0,
            type=float,
            help="insert this percentage of additional random tokens",
        )
        parser.add_argument(
            "--poisson-lambda",
            default=3.0,
            type=float,
            help="randomly shuffle sentences for this proportion of inputs",
        )
        parser.add_argument(
            "--mask-length",
            default="span-poisson",
            type=str,
            choices=["subword", "word", "span-poisson"],
            help="mask length to choose",
        )
        parser.add_argument(
            "--replace-length",
            default=1,
            type=int,
            help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
        )

        # multi-lingual
        parser.add_argument(
            "--multilang-sampling-alpha",
            type=float,
            default=1.0,
            help="smoothing alpha for sample ratios across multiple datasets",
        )
        parser.add_argument(
            "--lang-pairs",
            default="",
            metavar="PAIRS",
            help="comma-separated list of language pairs (in training order): phnen-en,phnfr-fr,phnit-it. Do masking",
        )
        parser.add_argument(
            "--lang-pairs-bitext",
            default="",
            metavar="PAIRS",
            help="comma-separated list of language pairs (in training order): en-de,en-fr,de-fr. No masking",
        )
        parser.add_argument("--add-src-lang-token", default=False, action="store_true")
        parser.add_argument("--add-tgt-lang-token", default=False, action="store_true")
        parser.add_argument(
            "--no-whole-word-mask-langs",
            type=str,
            default="",
            metavar="N",
            help="languages without spacing between words dont support whole word masking",
        )
        parser.add_argument(
            "--use-mask-whole-words", default=False, action="store_true"
        )

    @classmethod
    def setup_task(cls, args, **kwargs):
        """Setup the task."""
        paths = args.data.split(":")
        assert len(paths) > 0
        src_dict = Dictionary.load(
            os.path.join(paths[0], "src_dict.txt")
        )  # assume all languages share a source dictionary
        tgt_dict = Dictionary.load(
            os.path.join(paths[0], "tgt_dict.txt")
        )  # assume all languages share a target dictionary

        lang_pairs = args.lang_pairs + "," + args.lang_pairs_bitext
        lang_pairs = re.sub(",$", "", re.sub("^,", "", lang_pairs))
        src_langs = [lp.split("-")[0] for lp in lang_pairs.split(",")]
        tgt_langs = [lp.split("-")[1] for lp in lang_pairs.split(",")]

        if args.add_src_lang_token:
            for lang in src_langs:
                assert (
                    src_dict.index(PairedDenoisingTask.LANG_TAG_TEMPLATE.format(lang))
                    != src_dict.unk()
                )
        if args.add_tgt_lang_token:
            for lang in tgt_langs:
                assert (
                    tgt_dict.index(PairedDenoisingTask.LANG_TAG_TEMPLATE.format(lang))
                    != tgt_dict.unk()
                )

        logger.info("source dictionary: {} types".format(len(src_dict)))
        logger.info("target dictionary: {} types".format(len(tgt_dict)))
        if not hasattr(args, "shuffle_instance"):
            args.shuffle_instance = False
        return cls(args, src_dict, tgt_dict)

    def __init__(self, args, src_dict, tgt_dict):
        super().__init__(args, src_dict, tgt_dict)
        # check mask token
        self.mask_idx = self.src_dict.index("<mask>")
        assert self.mask_idx != self.src_dict.unk()
        self.lang_pairs = args.lang_pairs
        self.lang_pairs_bitext = args.lang_pairs_bitext
        self.args = args

    @classmethod
    def language_pair_denoising_dataset(
        cls,
        data_path,
        do_mask,
        split,
        src,
        src_dict,
        tgt,
        tgt_dict,
        mask_idx,
        mask_whole_words,
        seed,
        args,
        dataset_impl,
        combine=False,
        left_pad_source=True,
        left_pad_target=False,
        max_source_positions=1024,
        max_target_positions=1024,
        shuffle=True,
        src_lang_id=None,
        tgt_lang_id=None,
    ):
        def split_exists(split, src, tgt, lang, data_path):
            filename = os.path.join(
                data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)
            )
            return indexed_dataset.dataset_exists(filename, impl=dataset_impl)

        src_datasets = []
        tgt_datasets = []

        for k in itertools.count():
            split_k = split + (str(k) if k > 0 else "")

            # infer langcode
            if split_exists(split_k, src, tgt, src, data_path):
                prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
            elif split_exists(split_k, tgt, src, src, data_path):
                prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
            else:
                if k > 0:
                    break
                else:
                    raise FileNotFoundError(
                        "Dataset not found: {} ({})".format(split, data_path)
                    )

            src_dataset = data_utils.load_indexed_dataset(
                prefix + src, src_dict, dataset_impl
            )
            src_datasets.append(src_dataset)

            tgt_dataset = data_utils.load_indexed_dataset(
                prefix + tgt, tgt_dict, dataset_impl
            )
            if tgt_dataset is not None:
                tgt_datasets.append(tgt_dataset)

            logger.info(
                "{} {} {}-{} {} examples".format(
                    data_path, split_k, src, tgt, len(src_datasets[-1])
                )
            )

            if not combine:
                break

        assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0

        if len(src_datasets) == 1:
            src_dataset = src_datasets[0]
            tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None
        else:
            sample_ratios = [1] * len(src_datasets)
            src_dataset = ConcatDataset(src_datasets, sample_ratios)
            if len(tgt_datasets) > 0:
                tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
            else:
                tgt_dataset = None

        eos = None

        tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None
        if not do_mask:
            return LanguagePairDataset(
                src_dataset,
                src_dataset.sizes,
                src_dict,
                tgt_dataset,
                tgt_dataset_sizes,
                tgt_dict,
                left_pad_source=left_pad_source,
                left_pad_target=left_pad_target,
                eos=eos,
                shuffle=shuffle,
                src_lang_id=src_lang_id,
                tgt_lang_id=tgt_lang_id,
            )

        return LanguagePairDenoisingDataset(
            src_dataset,
            src_dataset.sizes,
            src_dict,
            tgt_dataset,
            tgt_dataset_sizes,
            tgt_dict,
            mask_idx,
            mask_whole_words,
            seed,
            args,
            left_pad_source=left_pad_source,
            left_pad_target=left_pad_target,
            eos=eos,
            shuffle=shuffle,
            src_lang_id=src_lang_id,
            tgt_lang_id=tgt_lang_id,
        )

    def _get_sample_prob(self, dataset_lens):
        """
        Get smoothed sampling porbability by languages. This helps low resource
        languages by upsampling them.
        """
        prob = dataset_lens / dataset_lens.sum()
        smoothed_prob = prob ** self.args.multilang_sampling_alpha
        smoothed_prob = smoothed_prob / smoothed_prob.sum()
        return smoothed_prob

    def resample_datasets(self, lang_datasets, lang_pairs_all, epoch):
        # For train subset, additionally up or down sample languages.
        if self.args.multilang_sampling_alpha == 1.0:
            return lang_datasets

        dataset_lengths = np.array(
            [len(d) for d in lang_datasets],
            dtype=float,
        )
        sample_probs = self._get_sample_prob(dataset_lengths)
        logger.info(
            "Sample probability by language pair: {}".format(
                {
                    lp: "{0:.4f}".format(sample_probs[id])
                    for id, lp in enumerate(lang_pairs_all)
                }
            )
        )
        size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
        logger.info(
            "Up/Down Sampling ratio by language: {}".format(
                {
                    lp: "{0:.2f}".format(size_ratio[id])
                    for id, lp in enumerate(lang_pairs_all)
                }
            )
        )

        resampled_lang_datasets = [
            ResamplingDataset(
                lang_datasets[i],
                size_ratio=size_ratio[i],
                seed=self.args.seed,
                epoch=epoch,
                replace=size_ratio[i] >= 1.0,
            )
            for i, d in enumerate(lang_datasets)
        ]
        return resampled_lang_datasets

    def load_dataset_only(
        self, split, lang_pairs, do_mask=True, epoch=1, combine=False
    ):
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        # TODO unk token will be considered as first word too, though it might be an unknown phoneme within a word
        # get_whole_word_mask returns a tensor (size V by 1 ) to indicate if a token is a word start token
        mask_whole_src_words = gen_whole_word_mask(self.args, self.src_dict)
        language_without_segmentations = self.args.no_whole_word_mask_langs.split(",")
        lang_datasets = []
        eos_bos = []
        lang_pairs = lang_pairs.split(",") if lang_pairs != "" else []
        assert len(lang_pairs) > 0
        for lp in lang_pairs:
            src, tgt = lp.split("-")
            lang_mask_whole_src_words = (
                mask_whole_src_words
                if src not in language_without_segmentations
                else None
            )

            end_token = (
                self.source_dictionary.index(
                    PairedDenoisingTask.LANG_TAG_TEMPLATE.format(src)
                )
                if self.args.add_src_lang_token
                else None
            )
            bos_token = (
                self.target_dictionary.index(
                    PairedDenoisingTask.LANG_TAG_TEMPLATE.format(tgt)
                )
                if self.args.add_tgt_lang_token
                else None
            )
            src_lang_id = None

            if self.args.add_src_lang_token or self.args.add_tgt_lang_token:
                eos_bos.append((end_token, bos_token))

            dataset = PairedDenoisingTask.language_pair_denoising_dataset(
                data_path,
                do_mask,
                split,
                src,
                self.source_dictionary,
                tgt,
                self.target_dictionary,
                self.mask_idx,
                lang_mask_whole_src_words,
                self.args.seed,
                self.args,
                self.args.dataset_impl,
                combine=combine,
                left_pad_source=utils.eval_bool(self.args.left_pad_source),
                left_pad_target=utils.eval_bool(self.args.left_pad_target),
                max_source_positions=self.args.max_source_positions,
                max_target_positions=self.args.max_target_positions,
                src_lang_id=src_lang_id,
            )

            lang_datasets.append(dataset)

        if len(lang_datasets) == 0:
            return
        elif len(lang_datasets) == 1:
            dataset = lang_datasets[0]
            if self.args.add_src_lang_token or self.args.add_tgt_lang_token:
                end_token, bos_token = eos_bos[0]
                dataset = TransformEosLangPairDataset(
                    dataset,
                    src_eos=self.source_dictionary.eos(),
                    new_src_eos=end_token,
                    tgt_bos=self.target_dictionary.eos(),
                    new_tgt_bos=bos_token,
                )
        else:
            end_tokens = [item[0] for item in eos_bos if item[0] is not None]
            bos_tokens = [item[1] for item in eos_bos if item[1] is not None]
            lang_datasets = self.resample_datasets(lang_datasets, lang_pairs, epoch)
            dataset = TransformEosConcatLangPairDataset(
                lang_datasets,
                self.source_dictionary.eos(),
                self.target_dictionary.eos(),
                new_src_eos=end_tokens,
                new_tgt_bos=bos_tokens,
            )
        return dataset

    # split in (train, valid, test, ...)
    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        self.datasets[split] = self.load_dataset_only(
            split, self.lang_pairs, epoch=epoch, combine=combine
        )