File size: 15,550 Bytes
211c22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import os
import re
import numpy as np
import torch
from examples.speech_text_joint_to_text.data.pair_denoising_dataset import (
LanguagePairDenoisingDataset,
)
from fairseq import utils
from fairseq.data import (
ConcatDataset,
Dictionary,
LanguagePairDataset,
ResamplingDataset,
TransformEosConcatLangPairDataset,
TransformEosLangPairDataset,
data_utils,
indexed_dataset,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask
logger = logging.getLogger(__name__)
def gen_whole_word_mask(args, dictionary):
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
if tok in ["<unk>", "<s>", "</s>", "<pad>"]:
return True
return tok.startswith("\u2581")
if args.use_mask_whole_words:
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
else:
# it will mask every token as word leading token, since no bpe model is loaded for phoneme tokens
return get_whole_word_mask(args, dictionary)
return mask_whole_words
@register_task("paired_denoising")
class PairedDenoisingTask(TranslationTask):
LANG_TAG_TEMPLATE = "<lang:{}>" # Tag for language (target)
@staticmethod
def add_args(parser):
TranslationTask.add_args(parser)
# bart setting
parser.add_argument(
"--mask",
default=0.0,
type=float,
help="fraction of words/subwords that will be masked",
)
parser.add_argument(
"--mask-random",
default=0.0,
type=float,
help="instead of using [MASK], use random token this often",
)
parser.add_argument(
"--insert",
default=0.0,
type=float,
help="insert this percentage of additional random tokens",
)
parser.add_argument(
"--poisson-lambda",
default=3.0,
type=float,
help="randomly shuffle sentences for this proportion of inputs",
)
parser.add_argument(
"--mask-length",
default="span-poisson",
type=str,
choices=["subword", "word", "span-poisson"],
help="mask length to choose",
)
parser.add_argument(
"--replace-length",
default=1,
type=int,
help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
)
# multi-lingual
parser.add_argument(
"--multilang-sampling-alpha",
type=float,
default=1.0,
help="smoothing alpha for sample ratios across multiple datasets",
)
parser.add_argument(
"--lang-pairs",
default="",
metavar="PAIRS",
help="comma-separated list of language pairs (in training order): phnen-en,phnfr-fr,phnit-it. Do masking",
)
parser.add_argument(
"--lang-pairs-bitext",
default="",
metavar="PAIRS",
help="comma-separated list of language pairs (in training order): en-de,en-fr,de-fr. No masking",
)
parser.add_argument("--add-src-lang-token", default=False, action="store_true")
parser.add_argument("--add-tgt-lang-token", default=False, action="store_true")
parser.add_argument(
"--no-whole-word-mask-langs",
type=str,
default="",
metavar="N",
help="languages without spacing between words dont support whole word masking",
)
parser.add_argument(
"--use-mask-whole-words", default=False, action="store_true"
)
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
paths = args.data.split(":")
assert len(paths) > 0
src_dict = Dictionary.load(
os.path.join(paths[0], "src_dict.txt")
) # assume all languages share a source dictionary
tgt_dict = Dictionary.load(
os.path.join(paths[0], "tgt_dict.txt")
) # assume all languages share a target dictionary
lang_pairs = args.lang_pairs + "," + args.lang_pairs_bitext
lang_pairs = re.sub(",$", "", re.sub("^,", "", lang_pairs))
src_langs = [lp.split("-")[0] for lp in lang_pairs.split(",")]
tgt_langs = [lp.split("-")[1] for lp in lang_pairs.split(",")]
if args.add_src_lang_token:
for lang in src_langs:
assert (
src_dict.index(PairedDenoisingTask.LANG_TAG_TEMPLATE.format(lang))
!= src_dict.unk()
)
if args.add_tgt_lang_token:
for lang in tgt_langs:
assert (
tgt_dict.index(PairedDenoisingTask.LANG_TAG_TEMPLATE.format(lang))
!= tgt_dict.unk()
)
logger.info("source dictionary: {} types".format(len(src_dict)))
logger.info("target dictionary: {} types".format(len(tgt_dict)))
if not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
return cls(args, src_dict, tgt_dict)
def __init__(self, args, src_dict, tgt_dict):
super().__init__(args, src_dict, tgt_dict)
# check mask token
self.mask_idx = self.src_dict.index("<mask>")
assert self.mask_idx != self.src_dict.unk()
self.lang_pairs = args.lang_pairs
self.lang_pairs_bitext = args.lang_pairs_bitext
self.args = args
@classmethod
def language_pair_denoising_dataset(
cls,
data_path,
do_mask,
split,
src,
src_dict,
tgt,
tgt_dict,
mask_idx,
mask_whole_words,
seed,
args,
dataset_impl,
combine=False,
left_pad_source=True,
left_pad_target=False,
max_source_positions=1024,
max_target_positions=1024,
shuffle=True,
src_lang_id=None,
tgt_lang_id=None,
):
def split_exists(split, src, tgt, lang, data_path):
filename = os.path.join(
data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)
)
return indexed_dataset.dataset_exists(filename, impl=dataset_impl)
src_datasets = []
tgt_datasets = []
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
# infer langcode
if split_exists(split_k, src, tgt, src, data_path):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
elif split_exists(split_k, tgt, src, src, data_path):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
else:
if k > 0:
break
else:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
src_dataset = data_utils.load_indexed_dataset(
prefix + src, src_dict, dataset_impl
)
src_datasets.append(src_dataset)
tgt_dataset = data_utils.load_indexed_dataset(
prefix + tgt, tgt_dict, dataset_impl
)
if tgt_dataset is not None:
tgt_datasets.append(tgt_dataset)
logger.info(
"{} {} {}-{} {} examples".format(
data_path, split_k, src, tgt, len(src_datasets[-1])
)
)
if not combine:
break
assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0
if len(src_datasets) == 1:
src_dataset = src_datasets[0]
tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None
else:
sample_ratios = [1] * len(src_datasets)
src_dataset = ConcatDataset(src_datasets, sample_ratios)
if len(tgt_datasets) > 0:
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
else:
tgt_dataset = None
eos = None
tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None
if not do_mask:
return LanguagePairDataset(
src_dataset,
src_dataset.sizes,
src_dict,
tgt_dataset,
tgt_dataset_sizes,
tgt_dict,
left_pad_source=left_pad_source,
left_pad_target=left_pad_target,
eos=eos,
shuffle=shuffle,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id,
)
return LanguagePairDenoisingDataset(
src_dataset,
src_dataset.sizes,
src_dict,
tgt_dataset,
tgt_dataset_sizes,
tgt_dict,
mask_idx,
mask_whole_words,
seed,
args,
left_pad_source=left_pad_source,
left_pad_target=left_pad_target,
eos=eos,
shuffle=shuffle,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id,
)
def _get_sample_prob(self, dataset_lens):
"""
Get smoothed sampling porbability by languages. This helps low resource
languages by upsampling them.
"""
prob = dataset_lens / dataset_lens.sum()
smoothed_prob = prob ** self.args.multilang_sampling_alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
return smoothed_prob
def resample_datasets(self, lang_datasets, lang_pairs_all, epoch):
# For train subset, additionally up or down sample languages.
if self.args.multilang_sampling_alpha == 1.0:
return lang_datasets
dataset_lengths = np.array(
[len(d) for d in lang_datasets],
dtype=float,
)
sample_probs = self._get_sample_prob(dataset_lengths)
logger.info(
"Sample probability by language pair: {}".format(
{
lp: "{0:.4f}".format(sample_probs[id])
for id, lp in enumerate(lang_pairs_all)
}
)
)
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
logger.info(
"Up/Down Sampling ratio by language: {}".format(
{
lp: "{0:.2f}".format(size_ratio[id])
for id, lp in enumerate(lang_pairs_all)
}
)
)
resampled_lang_datasets = [
ResamplingDataset(
lang_datasets[i],
size_ratio=size_ratio[i],
seed=self.args.seed,
epoch=epoch,
replace=size_ratio[i] >= 1.0,
)
for i, d in enumerate(lang_datasets)
]
return resampled_lang_datasets
def load_dataset_only(
self, split, lang_pairs, do_mask=True, epoch=1, combine=False
):
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
# TODO unk token will be considered as first word too, though it might be an unknown phoneme within a word
# get_whole_word_mask returns a tensor (size V by 1 ) to indicate if a token is a word start token
mask_whole_src_words = gen_whole_word_mask(self.args, self.src_dict)
language_without_segmentations = self.args.no_whole_word_mask_langs.split(",")
lang_datasets = []
eos_bos = []
lang_pairs = lang_pairs.split(",") if lang_pairs != "" else []
assert len(lang_pairs) > 0
for lp in lang_pairs:
src, tgt = lp.split("-")
lang_mask_whole_src_words = (
mask_whole_src_words
if src not in language_without_segmentations
else None
)
end_token = (
self.source_dictionary.index(
PairedDenoisingTask.LANG_TAG_TEMPLATE.format(src)
)
if self.args.add_src_lang_token
else None
)
bos_token = (
self.target_dictionary.index(
PairedDenoisingTask.LANG_TAG_TEMPLATE.format(tgt)
)
if self.args.add_tgt_lang_token
else None
)
src_lang_id = None
if self.args.add_src_lang_token or self.args.add_tgt_lang_token:
eos_bos.append((end_token, bos_token))
dataset = PairedDenoisingTask.language_pair_denoising_dataset(
data_path,
do_mask,
split,
src,
self.source_dictionary,
tgt,
self.target_dictionary,
self.mask_idx,
lang_mask_whole_src_words,
self.args.seed,
self.args,
self.args.dataset_impl,
combine=combine,
left_pad_source=utils.eval_bool(self.args.left_pad_source),
left_pad_target=utils.eval_bool(self.args.left_pad_target),
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
src_lang_id=src_lang_id,
)
lang_datasets.append(dataset)
if len(lang_datasets) == 0:
return
elif len(lang_datasets) == 1:
dataset = lang_datasets[0]
if self.args.add_src_lang_token or self.args.add_tgt_lang_token:
end_token, bos_token = eos_bos[0]
dataset = TransformEosLangPairDataset(
dataset,
src_eos=self.source_dictionary.eos(),
new_src_eos=end_token,
tgt_bos=self.target_dictionary.eos(),
new_tgt_bos=bos_token,
)
else:
end_tokens = [item[0] for item in eos_bos if item[0] is not None]
bos_tokens = [item[1] for item in eos_bos if item[1] is not None]
lang_datasets = self.resample_datasets(lang_datasets, lang_pairs, epoch)
dataset = TransformEosConcatLangPairDataset(
lang_datasets,
self.source_dictionary.eos(),
self.target_dictionary.eos(),
new_src_eos=end_tokens,
new_tgt_bos=bos_tokens,
)
return dataset
# split in (train, valid, test, ...)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
self.datasets[split] = self.load_dataset_only(
split, self.lang_pairs, epoch=epoch, combine=combine
)
|