PyTorch
ssl-aasist
custom_code
File size: 8,553 Bytes
010952f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import logging
import os

import hydra
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.layers.torch import Rearrange
from torch.utils.data import DataLoader, Dataset

from .utils import Accuracy

logger = logging.getLogger(__name__)


def save_ckpt(model, path, model_class):
    ckpt = {
        "state_dict": model.state_dict(),
        "padding_token": model.padding_token,
        "model_class": model_class,
    }
    torch.save(ckpt, path)


def load_ckpt(path):
    ckpt = torch.load(path)
    ckpt["model_class"]["_target_"] = "emotion_models.duration_predictor.CnnPredictor"
    model = hydra.utils.instantiate(ckpt["model_class"])
    model.load_state_dict(ckpt["state_dict"])
    model.padding_token = ckpt["padding_token"]
    model = model.cpu()
    model.eval()
    return model


class Collator:
    def __init__(self, padding_idx):
        self.padding_idx = padding_idx

    def __call__(self, batch):
        x = [item[0] for item in batch]
        lengths = [len(item) for item in x]
        x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True, padding_value=self.padding_idx)
        y = [item[1] for item in batch]
        y = torch.nn.utils.rnn.pad_sequence(y, batch_first=True, padding_value=self.padding_idx)
        mask = (x != self.padding_idx)
        return x, y, mask, lengths


class Predictor(nn.Module):
    def __init__(self, n_tokens, emb_dim):
        super(Predictor, self).__init__()
        self.n_tokens = n_tokens
        self.emb_dim = emb_dim
        self.padding_token = n_tokens
        # add 1 extra embedding for padding token, set the padding index to be the last token
        # (tokens from the clustering start at index 0)
        self.emb = nn.Embedding(n_tokens + 1, emb_dim, padding_idx=self.padding_token)

    def inflate_input(self, batch):
        """ get a sequence of tokens, predict their durations
        and inflate them accordingly """
        batch_durs = self.forward(batch)
        batch_durs = torch.exp(batch_durs) - 1
        batch_durs = batch_durs.round()
        output = []
        for seq, durs in zip(batch, batch_durs):
            inflated_seq = []
            for token, n in zip(seq, durs):
                if token == self.padding_token:
                    break
                n = int(n.item())
                token = int(token.item())
                inflated_seq.extend([token for _ in range(n)])
            output.append(inflated_seq)
        output = torch.LongTensor(output)
        return output


class CnnPredictor(Predictor):
    def __init__(self, n_tokens, emb_dim, channels, kernel, output_dim, dropout, n_layers):
        super(CnnPredictor, self).__init__(n_tokens=n_tokens, emb_dim=emb_dim)
        layers = [
            Rearrange("b t c -> b c t"),
            nn.Conv1d(emb_dim, channels, kernel_size=kernel, padding=(kernel - 1) // 2),
            Rearrange("b c t -> b t c"),
            nn.ReLU(),
            nn.LayerNorm(channels),
            nn.Dropout(dropout),
        ]
        for _ in range(n_layers-1):
            layers += [
                Rearrange("b t c -> b c t"),
                nn.Conv1d(channels, channels, kernel_size=kernel, padding=(kernel - 1) // 2),
                Rearrange("b c t -> b t c"),
                nn.ReLU(),
                nn.LayerNorm(channels),
                nn.Dropout(dropout),
            ]
        self.conv_layer = nn.Sequential(*layers)
        self.proj = nn.Linear(channels, output_dim)

    def forward(self, x):
        x = self.emb(x)
        x = self.conv_layer(x)
        x = self.proj(x)
        x = x.squeeze(-1)
        return x


def l2_log_loss(input, target):
    return F.mse_loss(
        input=input.float(),
        target=torch.log(target.float() + 1),
        reduce=False
    )


class DurationDataset(Dataset):
    def __init__(self, tsv_path, km_path, substring=""):
        lines = open(tsv_path, "r").readlines()
        self.root, self.tsv = lines[0], lines[1:]
        self.km = open(km_path, "r").readlines()
        logger.info(f"loaded {len(self.km)} files")

        if substring != "":
            tsv, km = [], []
            for tsv_line, km_line in zip(self.tsv, self.km):
                if substring.lower() in tsv_line.lower():
                    tsv.append(tsv_line)
                    km.append(km_line)
            self.tsv, self.km = tsv, km
            logger.info(f"after filtering: {len(self.km)} files")

    def __len__(self):
        return len(self.km)

    def __getitem__(self, i):
        x = self.km[i]
        x = x.split(" ")
        x = list(map(int, x))

        y = []
        xd = []
        count = 1
        for x1, x2 in zip(x[:-1], x[1:]):
            if x1 == x2:
                count += 1
                continue
            else:
                y.append(count)
                xd.append(x1)
                count = 1

        xd = torch.LongTensor(xd)
        y = torch.LongTensor(y)
        return xd, y


def train(cfg):
    device = "cuda:0"
    model = hydra.utils.instantiate(cfg[cfg.model]).to(device)
    optimizer = hydra.utils.instantiate(cfg.optimizer, model.parameters())
    # add 1 extra embedding for padding token, set the padding index to be the last token
    # (tokens from the clustering start at index 0)
    collate_fn = Collator(padding_idx=model.padding_token)
    logger.info(f"data: {cfg.train_tsv}")
    train_ds = DurationDataset(cfg.train_tsv, cfg.train_km, substring=cfg.substring)
    valid_ds = DurationDataset(cfg.valid_tsv, cfg.valid_km, substring=cfg.substring)
    train_dl = DataLoader(train_ds, batch_size=32, shuffle=True, collate_fn=collate_fn)
    valid_dl = DataLoader(valid_ds, batch_size=32, shuffle=False, collate_fn=collate_fn)

    best_loss = float("inf")
    for epoch in range(cfg.epochs):
        train_loss, train_loss_scaled = train_epoch(model, train_dl, l2_log_loss, optimizer, device)
        valid_loss, valid_loss_scaled, *acc = valid_epoch(model, valid_dl, l2_log_loss, device)
        acc0, acc1, acc2, acc3 = acc
        if valid_loss_scaled < best_loss:
            path = f"{os.getcwd()}/{cfg.substring}.ckpt"
            save_ckpt(model, path, cfg[cfg.model])
            best_loss = valid_loss_scaled
            logger.info(f"saved checkpoint: {path}")
            logger.info(f"[epoch {epoch}] train loss: {train_loss:.3f}, train scaled: {train_loss_scaled:.3f}")
            logger.info(f"[epoch {epoch}] valid loss: {valid_loss:.3f}, valid scaled: {valid_loss_scaled:.3f}")
            logger.info(f"acc: {acc0,acc1,acc2,acc3}")


def train_epoch(model, loader, criterion, optimizer, device):
    model.train()
    epoch_loss = 0
    epoch_loss_scaled = 0
    for x, y, mask, _ in loader:
        x, y, mask = x.to(device), y.to(device), mask.to(device)
        yhat = model(x)
        loss = criterion(yhat, y) * mask
        loss = torch.mean(loss)
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        epoch_loss += loss.item()
        # get normal scale loss
        yhat_scaled = torch.exp(yhat) - 1
        yhat_scaled = torch.round(yhat_scaled)
        scaled_loss = torch.mean(torch.abs(yhat_scaled - y) * mask)
        epoch_loss_scaled += scaled_loss.item()
    return epoch_loss / len(loader), epoch_loss_scaled / len(loader)


def valid_epoch(model, loader, criterion, device):
    model.eval()
    epoch_loss = 0
    epoch_loss_scaled = 0
    acc = Accuracy()
    for x, y, mask, _ in loader:
        x, y, mask = x.to(device), y.to(device), mask.to(device)
        yhat = model(x)
        loss = criterion(yhat, y) * mask
        loss = torch.mean(loss)
        epoch_loss += loss.item()
        # get normal scale loss
        yhat_scaled = torch.exp(yhat) - 1
        yhat_scaled = torch.round(yhat_scaled)
        scaled_loss = torch.sum(torch.abs(yhat_scaled - y) * mask) / mask.sum()
        acc.update(yhat_scaled[mask].view(-1).float(), y[mask].view(-1).float())
        epoch_loss_scaled += scaled_loss.item()
    logger.info(f"example y: {y[0, :10].tolist()}")
    logger.info(f"example yhat: {yhat_scaled[0, :10].tolist()}")
    acc0 = acc.acc(tol=0)
    acc1 = acc.acc(tol=1)
    acc2 = acc.acc(tol=2)
    acc3 = acc.acc(tol=3)
    logger.info(f"accs: {acc0,acc1,acc2,acc3}")
    return epoch_loss / len(loader), epoch_loss_scaled / len(loader), acc0, acc1, acc2, acc3


@hydra.main(config_path=".", config_name="duration_predictor.yaml")
def main(cfg):
    logger.info(f"{cfg}")
    train(cfg)


if __name__ == "__main__":
    main()