File size: 13,669 Bytes
6789f6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import logging
import math
import random
import time
import numpy as np
import os
import torch
from torchvision import datasets, transforms
from .path_dataset import PathDataset
from fairseq.data import FairseqDataset
from fairseq.data.data_utils import compute_block_mask_1d, compute_block_mask_2d
from shutil import copyfile
logger = logging.getLogger(__name__)
def load(path, loader, cache):
if hasattr(caching_loader, "cache_root"):
cache = caching_loader.cache_root
cached_path = cache + path
num_tries = 3
for curr_try in range(num_tries):
try:
if curr_try == 2:
return loader(path)
if not os.path.exists(cached_path) or curr_try > 0:
os.makedirs(os.path.dirname(cached_path), exist_ok=True)
copyfile(path, cached_path)
os.chmod(cached_path, 0o777)
return loader(cached_path)
except Exception as e:
logger.warning(str(e))
if "Errno 13" in str(e):
caching_loader.cache_root = f"/scratch/{random.randint(0, 69420)}"
logger.warning(f"setting cache root to {caching_loader.cache_root}")
cached_path = caching_loader.cache_root + path
if curr_try == (num_tries - 1):
raise
time.sleep(2)
def caching_loader(cache_root: str, loader):
if cache_root is None:
return loader
if cache_root == "slurm_tmpdir":
cache_root = os.environ["SLURM_TMPDIR"]
assert len(cache_root) > 0
if not cache_root.endswith("/"):
cache_root += "/"
return partial(load, loader=loader, cache=cache_root)
class RandomResizedCropAndInterpolationWithTwoPic:
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(
self,
size,
second_size=None,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation="bilinear",
second_interpolation="lanczos",
):
if isinstance(size, tuple):
self.size = size
else:
self.size = (size, size)
if second_size is not None:
if isinstance(second_size, tuple):
self.second_size = second_size
else:
self.second_size = (second_size, second_size)
else:
self.second_size = None
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
logger.warning("range should be of kind (min, max)")
if interpolation == "random":
from PIL import Image
self.interpolation = (Image.BILINEAR, Image.BICUBIC)
else:
self.interpolation = self._pil_interp(interpolation)
self.second_interpolation = (
self._pil_interp(second_interpolation)
if second_interpolation is not None
else None
)
self.scale = scale
self.ratio = ratio
def _pil_interp(self, method):
from PIL import Image
if method == "bicubic":
return Image.BICUBIC
elif method == "lanczos":
return Image.LANCZOS
elif method == "hamming":
return Image.HAMMING
else:
# default bilinear, do we want to allow nearest?
return Image.BILINEAR
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
area = img.size[0] * img.size[1]
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size[0] and h <= img.size[1]:
i = random.randint(0, img.size[1] - h)
j = random.randint(0, img.size[0] - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img.size[0] / img.size[1]
if in_ratio < min(ratio):
w = img.size[0]
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = img.size[1]
w = int(round(h * max(ratio)))
else: # whole image
w = img.size[0]
h = img.size[1]
i = (img.size[1] - h) // 2
j = (img.size[0] - w) // 2
return i, j, h, w
def __call__(self, img):
import torchvision.transforms.functional as F
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
if self.second_size is None:
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
else:
return F.resized_crop(
img, i, j, h, w, self.size, interpolation
), F.resized_crop(
img, i, j, h, w, self.second_size, self.second_interpolation
)
class MaeImageDataset(FairseqDataset):
def __init__(
self,
root: str,
split: str,
input_size,
local_cache_path=None,
shuffle=True,
key="imgs",
beit_transforms=False,
target_transform=False,
no_transform=False,
compute_mask=False,
patch_size: int = 16,
mask_prob: float = 0.75,
mask_prob_adjust: float = 0,
mask_length: int = 1,
inverse_mask: bool = False,
expand_adjacent: bool = False,
mask_dropout: float = 0,
non_overlapping: bool = False,
require_same_masks: bool = True,
clone_batch: int = 1,
dataset_type: str = "imagefolder",
):
FairseqDataset.__init__(self)
self.shuffle = shuffle
self.key = key
loader = caching_loader(local_cache_path, datasets.folder.default_loader)
self.transform_source = None
self.transform_target = None
if target_transform:
self.transform_source = transforms.ColorJitter(0.4, 0.4, 0.4)
self.transform_target = transforms.ColorJitter(0.4, 0.4, 0.4)
if no_transform:
if input_size <= 224:
crop_pct = 224 / 256
else:
crop_pct = 1.0
size = int(input_size / crop_pct)
self.transform_train = transforms.Compose(
[
transforms.Resize(size, interpolation=3),
transforms.CenterCrop(input_size),
]
)
self.transform_train = transforms.Resize((input_size, input_size))
elif beit_transforms:
beit_transform_list = []
if not target_transform:
beit_transform_list.append(transforms.ColorJitter(0.4, 0.4, 0.4))
beit_transform_list.extend(
[
transforms.RandomHorizontalFlip(p=0.5),
RandomResizedCropAndInterpolationWithTwoPic(
size=input_size,
second_size=None,
interpolation="bicubic",
second_interpolation=None,
),
]
)
self.transform_train = transforms.Compose(beit_transform_list)
else:
self.transform_train = transforms.Compose(
[
transforms.RandomResizedCrop(
input_size, scale=(0.2, 1.0), interpolation=3
), # 3 is bicubic
transforms.RandomHorizontalFlip(),
]
)
self.final_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
if dataset_type == "imagefolder":
self.dataset = datasets.ImageFolder(
os.path.join(root, split), loader=loader
)
elif dataset_type == "path":
self.dataset = PathDataset(
root,
loader,
None,
None,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
else:
raise Exception(f"invalid dataset type {dataset_type}")
logger.info(
f"initial transform: {self.transform_train}, "
f"source transform: {self.transform_source}, "
f"target transform: {self.transform_target}, "
f"final transform: {self.final_transform}"
)
logger.info(f"loaded {len(self.dataset)} examples")
self.is_compute_mask = compute_mask
self.patches = (input_size // patch_size) ** 2
self.mask_prob = mask_prob
self.mask_prob_adjust = mask_prob_adjust
self.mask_length = mask_length
self.inverse_mask = inverse_mask
self.expand_adjacent = expand_adjacent
self.mask_dropout = mask_dropout
self.non_overlapping = non_overlapping
self.require_same_masks = require_same_masks
self.clone_batch = clone_batch
def __getitem__(self, index):
img, _ = self.dataset[index]
img = self.transform_train(img)
source = None
target = None
if self.transform_source is not None:
source = self.final_transform(self.transform_source(img))
if self.transform_target is not None:
target = self.final_transform(self.transform_target(img))
if source is None:
img = self.final_transform(img)
v = {"id": index, self.key: source if source is not None else img}
if target is not None:
v["target"] = target
if self.is_compute_mask:
if self.mask_length == 1:
mask = compute_block_mask_1d(
shape=(self.clone_batch, self.patches),
mask_prob=self.mask_prob,
mask_length=self.mask_length,
mask_prob_adjust=self.mask_prob_adjust,
inverse_mask=self.inverse_mask,
require_same_masks=True,
)
else:
mask = compute_block_mask_2d(
shape=(self.clone_batch, self.patches),
mask_prob=self.mask_prob,
mask_length=self.mask_length,
mask_prob_adjust=self.mask_prob_adjust,
inverse_mask=self.inverse_mask,
require_same_masks=True,
expand_adjcent=self.expand_adjacent,
mask_dropout=self.mask_dropout,
non_overlapping=self.non_overlapping,
)
v["precomputed_mask"] = mask
return v
def __len__(self):
return len(self.dataset)
def collater(self, samples):
if len(samples) == 0:
return {}
collated_img = torch.stack([s[self.key] for s in samples], dim=0)
res = {
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": {
self.key: collated_img,
},
}
if "target" in samples[0]:
collated_target = torch.stack([s["target"] for s in samples], dim=0)
res["net_input"]["target"] = collated_target
if "precomputed_mask" in samples[0]:
collated_mask = torch.cat([s["precomputed_mask"] for s in samples], dim=0)
res["net_input"]["precomputed_mask"] = collated_mask
return res
def num_tokens(self, index):
return 1
def size(self, index):
return 1
@property
def sizes(self):
return np.full((len(self),), 1)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
return order[0]
|