PyTorch
ssl-aasist
custom_code
File size: 3,520 Bytes
6789f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import logging

import numpy as np
import os

import torch

from torchvision import datasets, transforms

from timm.data import create_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
import PIL

from fairseq.data import FairseqDataset
from .mae_image_dataset import caching_loader


logger = logging.getLogger(__name__)


def build_transform(is_train, input_size, color_jitter, aa, reprob, remode, recount):
    mean = IMAGENET_DEFAULT_MEAN
    std = IMAGENET_DEFAULT_STD
    # train transform
    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=input_size,
            is_training=True,
            color_jitter=color_jitter,
            auto_augment=aa,
            interpolation="bicubic",
            re_prob=reprob,
            re_mode=remode,
            re_count=recount,
            mean=mean,
            std=std,
        )
        return transform

    # eval transform
    t = []
    if input_size <= 224:
        crop_pct = 224 / 256
    else:
        crop_pct = 1.0
    size = int(input_size / crop_pct)
    t.append(
        transforms.Resize(
            size, interpolation=PIL.Image.BICUBIC
        ),  # to maintain same ratio w.r.t. 224 images
    )
    t.append(transforms.CenterCrop(input_size))

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(mean, std))
    return transforms.Compose(t)


class MaeFinetuningImageDataset(FairseqDataset):
    def __init__(
        self,
        root: str,
        split: str,
        is_train: bool,
        input_size,
        color_jitter=None,
        aa="rand-m9-mstd0.5-inc1",
        reprob=0.25,
        remode="pixel",
        recount=1,
        local_cache_path=None,
        shuffle=True,
    ):
        FairseqDataset.__init__(self)

        self.shuffle = shuffle

        transform = build_transform(
            is_train, input_size, color_jitter, aa, reprob, remode, recount
        )

        path = os.path.join(root, split)
        loader = caching_loader(local_cache_path, datasets.folder.default_loader)

        self.dataset = datasets.ImageFolder(path, loader=loader, transform=transform)

        logger.info(f"loaded {len(self.dataset)} examples")

    def __getitem__(self, index):
        img, label = self.dataset[index]
        return {"id": index, "img": img, "label": label}

    def __len__(self):
        return len(self.dataset)

    def collater(self, samples):
        if len(samples) == 0:
            return {}

        collated_img = torch.stack([s["img"] for s in samples], dim=0)

        res = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "net_input": {
                "imgs": collated_img,
            },
        }

        if "label" in samples[0]:
            res["net_input"]["labels"] = torch.LongTensor([s["label"] for s in samples])

        return res

    def num_tokens(self, index):
        return 1

    def size(self, index):
        return 1

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        return order[0]