PyTorch
ssl-aasist
custom_code
File size: 11,418 Bytes
878264b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional, Tuple
import torch
from torch import Tensor
from torch.nn.functional import (
    linear, softmax, dropout, pad,
    has_torch_function,
    handle_torch_function,
    _in_projection_packed,
)
import math
import warnings


def _scaled_dot_product_attention(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    attn_mask: Optional[Tensor] = None,
    dropout_p: float = 0.0,
    bsz: int = 1,
    subset_heads: Optional[Tensor] = None,
    subset_weights: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
    B, Nt, E = q.shape
    q = q / math.sqrt(E)
    # B: bsz * total_num_heads
    # (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns)
    attn = torch.bmm(q, k.transpose(-2, -1))
    if attn_mask is not None:
        attn += attn_mask
    attn = softmax(attn, dim=-1)
    if dropout_p > 0.0:
        attn = dropout(attn, p=dropout_p)
    if subset_heads is None:
        # (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E)
        output = torch.bmm(attn, v)
    else:
        mixed_output = torch.bmm(attn, v).contiguous().view(bsz, -1, Nt, E)
        output = torch.stack(
            [mixed_output[torch.arange(bsz), subset_heads[:, col], :, :] for col in range(subset_heads.size(1))],
            dim=1
        )
        output = output * subset_weights.unsqueeze(2).unsqueeze(3)
        output = output.contiguous().view(-1, Nt, E)
    if subset_heads is not None:
        _, Nt, Ns = attn.size()
        mixed_attn = attn.view(bsz, -1, Nt, Ns)
        attn = torch.stack(
            [mixed_attn[torch.arange(bsz), subset_heads[:, col], :, :] for col in range(subset_heads.size(1))], dim=1
        )
    return output, attn


def _in_projection(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    w_q: Tensor,
    w_k: Tensor,
    w_v: Tensor,
    b_q: Optional[Tensor] = None,
    b_k: Optional[Tensor] = None,
    b_v: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor]:
    return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)


def multi_head_attention_forward(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    embed_dim_to_check: int,
    total_num_heads: int,
    num_heads: int,
    in_proj_weight: Tensor,
    in_proj_bias: Optional[Tensor],
    bias_k: Optional[Tensor],
    bias_v: Optional[Tensor],
    add_zero_attn: bool,
    dropout_p: float,
    out_proj_weight: Tensor,
    out_proj_bias: Optional[Tensor],
    training: bool = True,
    key_padding_mask: Optional[Tensor] = None,
    need_weights: bool = True,
    attn_mask: Optional[Tensor] = None,
    use_separate_proj_weight: bool = False,
    q_proj_weight: Optional[Tensor] = None,
    k_proj_weight: Optional[Tensor] = None,
    v_proj_weight: Optional[Tensor] = None,
    static_k: Optional[Tensor] = None,
    static_v: Optional[Tensor] = None,
    subset_heads: Optional[Tensor] = None,
    subset_weights: Optional[Tensor] = None,
):
    tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
    if has_torch_function(tens_ops):
        return handle_torch_function(
            multi_head_attention_forward,
            tens_ops,
            query,
            key,
            value,
            embed_dim_to_check,
            total_num_heads,
            num_heads,
            in_proj_weight,
            in_proj_bias,
            bias_k,
            bias_v,
            add_zero_attn,
            dropout_p,
            out_proj_weight,
            out_proj_bias,
            training=training,
            key_padding_mask=key_padding_mask,
            need_weights=need_weights,
            attn_mask=attn_mask,
            use_separate_proj_weight=use_separate_proj_weight,
            q_proj_weight=q_proj_weight,
            k_proj_weight=k_proj_weight,
            v_proj_weight=v_proj_weight,
            static_k=static_k,
            static_v=static_v,
            subset_heads=subset_heads,
            subset_weights=subset_weights
        )

    # set up shape vars
    tgt_len, bsz, embed_dim = query.shape
    src_len, _, _ = key.shape
    assert embed_dim == embed_dim_to_check, \
        f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
    if isinstance(embed_dim, torch.Tensor):
        # embed_dim can be a tensor when JIT tracing
        head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
    else:
        head_dim = embed_dim // num_heads
    assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
    if use_separate_proj_weight:
        # allow MHA to have different embedding dimensions when separate projection weights are used
        assert key.shape[:2] == value.shape[:2], \
            f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
    else:
        assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"

    #
    # compute in-projection
    #
    if not use_separate_proj_weight:
        q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
    else:
        assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
        assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
        assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
        if in_proj_bias is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = in_proj_bias.chunk(3)
        q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)

    # prep attention mask
    if attn_mask is not None:
        if attn_mask.dtype == torch.uint8:
            warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
            attn_mask = attn_mask.to(torch.bool)
        else:
            assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
                f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"
        # ensure attn_mask's dim is 3
        if attn_mask.dim() == 2:
            correct_2d_size = (tgt_len, src_len)
            if attn_mask.shape != correct_2d_size:
                raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
            attn_mask = attn_mask.unsqueeze(0)
        elif attn_mask.dim() == 3:
            correct_3d_size = (bsz * total_num_heads, tgt_len, src_len)
            if attn_mask.shape != correct_3d_size:
                raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
        else:
            raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")

    # prep key padding mask
    if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
        warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
        key_padding_mask = key_padding_mask.to(torch.bool)

    # add bias along batch dimension (currently second)
    if bias_k is not None and bias_v is not None:
        assert static_k is None, "bias cannot be added to static key."
        assert static_v is None, "bias cannot be added to static value."
        k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
        v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))
    else:
        assert bias_k is None
        assert bias_v is None

    #
    # reshape q, k, v for multihead attention and make em batch first
    #
    q = q.contiguous().view(tgt_len, bsz * total_num_heads, head_dim).transpose(0, 1)
    if static_k is None:
        k = k.contiguous().view(k.shape[0], bsz * total_num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert static_k.size(0) == bsz * total_num_heads, \
            f"expecting static_k.size(0) of {bsz * total_num_heads}, but got {static_k.size(0)}"
        assert static_k.size(2) == head_dim, \
            f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
        k = static_k
    if static_v is None:
        v = v.contiguous().view(v.shape[0], bsz * total_num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert static_v.size(0) == bsz * total_num_heads, \
            f"expecting static_v.size(0) of {bsz * total_num_heads}, but got {static_v.size(0)}"
        assert static_v.size(2) == head_dim, \
            f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
        v = static_v

    # add zero attention along batch dimension (now first)
    if add_zero_attn:
        zero_attn_shape = (bsz * total_num_heads, 1, head_dim)
        k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
        v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))

    # update source sequence length after adjustments
    src_len = k.size(1)

    # merge key padding and attention masks
    if key_padding_mask is not None:
        assert key_padding_mask.shape == (bsz, src_len), \
            f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
        key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).   \
            expand(-1, total_num_heads, -1, -1).reshape(bsz * total_num_heads, 1, src_len)
        if attn_mask is None:
            attn_mask = key_padding_mask
        elif attn_mask.dtype == torch.bool:
            attn_mask = attn_mask.logical_or(key_padding_mask)
        else:
            attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))

    # convert mask to float
    if attn_mask is not None and attn_mask.dtype == torch.bool:
        new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
        new_attn_mask.masked_fill_(attn_mask, float("-inf"))
        attn_mask = new_attn_mask

    # adjust dropout probability
    if not training:
        dropout_p = 0.0

    #
    # (deep breath) calculate attention and out projection
    #
    attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, bsz, subset_heads, subset_weights)
    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)

    if need_weights:
        # average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        return attn_output, attn_output_weights.sum(dim=1) / num_heads
    else:
        return attn_output, None