File size: 12,416 Bytes
d28af7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Contains a PyTorch definition for Gated Separable 3D network (S3D-G)
with a text module for computing joint text-video embedding from raw text
and video input. The following code will enable you to load the HowTo100M
pretrained S3D Text-Video model from:
A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic and A. Zisserman,
End-to-End Learning of Visual Representations from Uncurated Instructional Videos.
https://arxiv.org/abs/1912.06430.
S3D-G was proposed by:
S. Xie, C. Sun, J. Huang, Z. Tu and K. Murphy,
Rethinking Spatiotemporal Feature Learning For Video Understanding.
https://arxiv.org/abs/1712.04851.
Tensorflow code: https://github.com/tensorflow/models/blob/master/research/slim/nets/s3dg.py
The S3D architecture was slightly modified with a space to depth trick for TPU
optimization.
"""
import torch as th
import torch.nn.functional as F
import torch.nn as nn
import os
import numpy as np
import re
class InceptionBlock(nn.Module):
def __init__(
self,
input_dim,
num_outputs_0_0a,
num_outputs_1_0a,
num_outputs_1_0b,
num_outputs_2_0a,
num_outputs_2_0b,
num_outputs_3_0b,
gating=True,
):
super(InceptionBlock, self).__init__()
self.conv_b0 = STConv3D(input_dim, num_outputs_0_0a, [1, 1, 1])
self.conv_b1_a = STConv3D(input_dim, num_outputs_1_0a, [1, 1, 1])
self.conv_b1_b = STConv3D(
num_outputs_1_0a, num_outputs_1_0b, [3, 3, 3], padding=1, separable=True
)
self.conv_b2_a = STConv3D(input_dim, num_outputs_2_0a, [1, 1, 1])
self.conv_b2_b = STConv3D(
num_outputs_2_0a, num_outputs_2_0b, [3, 3, 3], padding=1, separable=True
)
self.maxpool_b3 = th.nn.MaxPool3d((3, 3, 3), stride=1, padding=1)
self.conv_b3_b = STConv3D(input_dim, num_outputs_3_0b, [1, 1, 1])
self.gating = gating
self.output_dim = (
num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b
)
if gating:
self.gating_b0 = SelfGating(num_outputs_0_0a)
self.gating_b1 = SelfGating(num_outputs_1_0b)
self.gating_b2 = SelfGating(num_outputs_2_0b)
self.gating_b3 = SelfGating(num_outputs_3_0b)
def forward(self, input):
"""Inception block
"""
b0 = self.conv_b0(input)
b1 = self.conv_b1_a(input)
b1 = self.conv_b1_b(b1)
b2 = self.conv_b2_a(input)
b2 = self.conv_b2_b(b2)
b3 = self.maxpool_b3(input)
b3 = self.conv_b3_b(b3)
if self.gating:
b0 = self.gating_b0(b0)
b1 = self.gating_b1(b1)
b2 = self.gating_b2(b2)
b3 = self.gating_b3(b3)
return th.cat((b0, b1, b2, b3), dim=1)
class SelfGating(nn.Module):
def __init__(self, input_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G.
"""
spatiotemporal_average = th.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = th.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
class STConv3D(nn.Module):
def __init__(
self, input_dim, output_dim, kernel_size, stride=1, padding=0, separable=False
):
super(STConv3D, self).__init__()
self.separable = separable
self.relu = nn.ReLU(inplace=True)
assert len(kernel_size) == 3
if separable and kernel_size[0] != 1:
spatial_kernel_size = [1, kernel_size[1], kernel_size[2]]
temporal_kernel_size = [kernel_size[0], 1, 1]
if isinstance(stride, list) and len(stride) == 3:
spatial_stride = [1, stride[1], stride[2]]
temporal_stride = [stride[0], 1, 1]
else:
spatial_stride = [1, stride, stride]
temporal_stride = [stride, 1, 1]
if isinstance(padding, list) and len(padding) == 3:
spatial_padding = [0, padding[1], padding[2]]
temporal_padding = [padding[0], 0, 0]
else:
spatial_padding = [0, padding, padding]
temporal_padding = [padding, 0, 0]
if separable:
self.conv1 = nn.Conv3d(
input_dim,
output_dim,
kernel_size=spatial_kernel_size,
stride=spatial_stride,
padding=spatial_padding,
bias=False,
)
self.bn1 = nn.BatchNorm3d(output_dim)
self.conv2 = nn.Conv3d(
output_dim,
output_dim,
kernel_size=temporal_kernel_size,
stride=temporal_stride,
padding=temporal_padding,
bias=False,
)
self.bn2 = nn.BatchNorm3d(output_dim)
else:
self.conv1 = nn.Conv3d(
input_dim,
output_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=False,
)
self.bn1 = nn.BatchNorm3d(output_dim)
def forward(self, input):
out = self.relu(self.bn1(self.conv1(input)))
if self.separable:
out = self.relu(self.bn2(self.conv2(out)))
return out
class MaxPool3dTFPadding(th.nn.Module):
def __init__(self, kernel_size, stride=None, padding="SAME"):
super(MaxPool3dTFPadding, self).__init__()
if padding == "SAME":
padding_shape = self._get_padding_shape(kernel_size, stride)
self.padding_shape = padding_shape
self.pad = th.nn.ConstantPad3d(padding_shape, 0)
self.pool = th.nn.MaxPool3d(kernel_size, stride, ceil_mode=True)
def _get_padding_shape(self, filter_shape, stride):
def _pad_top_bottom(filter_dim, stride_val):
pad_along = max(filter_dim - stride_val, 0)
pad_top = pad_along // 2
pad_bottom = pad_along - pad_top
return pad_top, pad_bottom
padding_shape = []
for filter_dim, stride_val in zip(filter_shape, stride):
pad_top, pad_bottom = _pad_top_bottom(filter_dim, stride_val)
padding_shape.append(pad_top)
padding_shape.append(pad_bottom)
depth_top = padding_shape.pop(0)
depth_bottom = padding_shape.pop(0)
padding_shape.append(depth_top)
padding_shape.append(depth_bottom)
return tuple(padding_shape)
def forward(self, inp):
inp = self.pad(inp)
out = self.pool(inp)
return out
class Sentence_Embedding(nn.Module):
def __init__(
self,
embd_dim,
num_embeddings=66250,
word_embedding_dim=300,
token_to_word_path="dict.npy",
max_words=16,
output_dim=2048,
):
super(Sentence_Embedding, self).__init__()
self.word_embd = nn.Embedding(num_embeddings, word_embedding_dim)
self.fc1 = nn.Linear(word_embedding_dim, output_dim)
self.fc2 = nn.Linear(output_dim, embd_dim)
self.word_to_token = {}
self.max_words = max_words
token_to_word = np.load(token_to_word_path)
for i, t in enumerate(token_to_word):
self.word_to_token[t] = i + 1
def _zero_pad_tensor_token(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = th.zeros(size - len(tensor)).long()
return th.cat((tensor, zero), dim=0)
def _split_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_token(self, words):
words = [
self.word_to_token[word] for word in words if word in self.word_to_token
]
if words:
we = self._zero_pad_tensor_token(th.LongTensor(words), self.max_words)
return we
else:
return th.zeros(self.max_words).long()
def _words_to_ids(self, x):
split_x = [self._words_to_token(self._split_text(sent.lower())) for sent in x]
return th.stack(split_x, dim=0)
def forward(self, x):
x = self._words_to_ids(x)
x = self.word_embd(x)
x = F.relu(self.fc1(x))
x = th.max(x, dim=1)[0]
x = self.fc2(x)
return {'text_embedding': x}
class S3D(nn.Module):
def __init__(self, dict_path, num_classes=512, gating=True, space_to_depth=True):
super(S3D, self).__init__()
self.num_classes = num_classes
self.gating = gating
self.space_to_depth = space_to_depth
if space_to_depth:
self.conv1 = STConv3D(
24, 64, [2, 4, 4], stride=1, padding=(1, 2, 2), separable=False
)
else:
self.conv1 = STConv3D(
3, 64, [3, 7, 7], stride=2, padding=(1, 3, 3), separable=False
)
self.conv_2b = STConv3D(64, 64, [1, 1, 1], separable=False)
self.conv_2c = STConv3D(64, 192, [3, 3, 3], padding=1, separable=True)
self.gating = SelfGating(192)
self.maxpool_2a = MaxPool3dTFPadding(
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME"
)
self.maxpool_3a = MaxPool3dTFPadding(
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding="SAME"
)
self.mixed_3b = InceptionBlock(192, 64, 96, 128, 16, 32, 32)
self.mixed_3c = InceptionBlock(
self.mixed_3b.output_dim, 128, 128, 192, 32, 96, 64
)
self.maxpool_4a = MaxPool3dTFPadding(
kernel_size=(3, 3, 3), stride=(2, 2, 2), padding="SAME"
)
self.mixed_4b = InceptionBlock(
self.mixed_3c.output_dim, 192, 96, 208, 16, 48, 64
)
self.mixed_4c = InceptionBlock(
self.mixed_4b.output_dim, 160, 112, 224, 24, 64, 64
)
self.mixed_4d = InceptionBlock(
self.mixed_4c.output_dim, 128, 128, 256, 24, 64, 64
)
self.mixed_4e = InceptionBlock(
self.mixed_4d.output_dim, 112, 144, 288, 32, 64, 64
)
self.mixed_4f = InceptionBlock(
self.mixed_4e.output_dim, 256, 160, 320, 32, 128, 128
)
self.maxpool_5a = self.maxPool3d_5a_2x2 = MaxPool3dTFPadding(
kernel_size=(2, 2, 2), stride=(2, 2, 2), padding="SAME"
)
self.mixed_5b = InceptionBlock(
self.mixed_4f.output_dim, 256, 160, 320, 32, 128, 128
)
self.mixed_5c = InceptionBlock(
self.mixed_5b.output_dim, 384, 192, 384, 48, 128, 128
)
self.fc = nn.Linear(self.mixed_5c.output_dim, num_classes)
self.text_module = Sentence_Embedding(num_classes,
token_to_word_path=dict_path)
def _space_to_depth(self, input):
"""3D space to depth trick for TPU optimization.
"""
B, C, T, H, W = input.shape
input = input.view(B, C, T // 2, 2, H // 2, 2, W // 2, 2)
input = input.permute(0, 3, 5, 7, 1, 2, 4, 6)
input = input.contiguous().view(B, 8 * C, T // 2, H // 2, W // 2)
return input
def forward(self, inputs):
"""Defines the S3DG base architecture."""
if self.space_to_depth:
inputs = self._space_to_depth(inputs)
net = self.conv1(inputs)
if self.space_to_depth:
# we need to replicate 'SAME' tensorflow padding
net = net[:, :, 1:, 1:, 1:]
net = self.maxpool_2a(net)
net = self.conv_2b(net)
net = self.conv_2c(net)
if self.gating:
net = self.gating(net)
net = self.maxpool_3a(net)
net = self.mixed_3b(net)
net = self.mixed_3c(net)
net = self.maxpool_4a(net)
net = self.mixed_4b(net)
net = self.mixed_4c(net)
net = self.mixed_4d(net)
net = self.mixed_4e(net)
net = self.mixed_4f(net)
net = self.maxpool_5a(net)
net = self.mixed_5b(net)
net = self.mixed_5c(net)
net = th.mean(net, dim=[2, 3, 4])
return {'video_embedding': self.fc(net), 'mixed_5c': net}
|