PyTorch
ssl-aasist
custom_code
File size: 26,064 Bytes
d28af7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) Facebook, Inc. All Rights Reserved

import torch

from torch import nn

try:
    from transformers.modeling_bert import (
        BertPreTrainedModel,
        BertModel,
        BertEncoder,
        BertPredictionHeadTransform,
    )
except ImportError:
    pass

from ..modules import VideoTokenMLP, MMBertEmbeddings


# --------------- fine-tuning models ---------------
class MMBertForJoint(BertPreTrainedModel):
    """A BertModel with isolated attention mask to separate modality."""

    def __init__(self, config):
        super().__init__(config)
        self.videomlp = VideoTokenMLP(config)
        self.bert = MMBertModel(config)
        self.init_weights()

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        next_sentence_label=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        separate_forward_split=None,
    ):
        return_dict = (
            return_dict if return_dict is not None
            else self.config.use_return_dict
        )
        video_tokens = self.videomlp(input_video_embeds)

        outputs = self.bert(
            input_ids,
            video_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            separate_forward_split=separate_forward_split,
        )

        return outputs


class MMBertForTokenClassification(BertPreTrainedModel):
    """A BertModel similar to MMJointUni, with extra wrapper layer
    to be fine-tuned from other pretrained MMFusion model."""

    def __init__(self, config):
        super().__init__(config)
        self.videomlp = VideoTokenMLP(config)
        self.bert = MMBertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # TODO(huxu): 779 is the number of classes for COIN: move to config?
        self.classifier = nn.Linear(config.hidden_size, 779)
        self.init_weights()

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        next_sentence_label=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        separate_forward_split=None,
    ):
        return_dict = (
            return_dict if return_dict is not None
            else self.config.use_return_dict
        )

        video_tokens = self.videomlp(input_video_embeds)
        outputs = self.bert(
            input_ids,
            video_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            separate_forward_split=separate_forward_split,
        )

        return (self.classifier(outputs[0]),)


# ------------ pre-training models ----------------

class MMBertForEncoder(BertPreTrainedModel):
    """A BertModel for Contrastive Learning."""
    def __init__(self, config):
        super().__init__(config)
        self.videomlp = VideoTokenMLP(config)
        self.bert = MMBertModel(config)
        self.init_weights()

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = (
            return_dict if return_dict is not None
            else self.config.use_return_dict
        )
        if input_video_embeds is not None:
            video_tokens = self.videomlp(input_video_embeds)
        else:
            video_tokens = None

        outputs = self.bert(
            input_ids,
            video_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return outputs


class MMBertForMFMMLM(BertPreTrainedModel):
    """A BertModel with shared prediction head on MFM-MLM."""
    def __init__(self, config):
        super().__init__(config)
        self.videomlp = VideoTokenMLP(config)
        self.bert = MMBertModel(config)
        self.cls = MFMMLMHead(config)
        self.hidden_size = config.hidden_size
        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_frame_labels=None,
        target_video_hidden_states=None,
        non_masked_frame_mask=None,
        masked_lm_labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = (
            return_dict if return_dict is not None
            else self.config.use_return_dict
        )
        if input_video_embeds is not None:
            video_tokens = self.videomlp(input_video_embeds)
        else:
            video_tokens = None

        if target_video_hidden_states is not None:
            target_video_hidden_states = self.videomlp(
                target_video_hidden_states)

            non_masked_frame_hidden_states = video_tokens.masked_select(
                non_masked_frame_mask.unsqueeze(-1)
            ).view(-1, self.hidden_size)

        outputs = self.bert(
            input_ids,
            video_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        mfm_scores, prediction_scores = None, None
        if masked_frame_labels is not None and masked_lm_labels is not None:
            # split the sequence.
            text_offset = masked_frame_labels.size(1) + 1  # [CLS]
            video_sequence_output = sequence_output[
                :, 1:text_offset
            ]  # remove [SEP] as not in video_label.
            text_sequence_output = torch.cat(
                [sequence_output[:, :1], sequence_output[:, text_offset:]],
                dim=1
            )

            hidden_size = video_sequence_output.size(-1)
            selected_video_output = video_sequence_output.masked_select(
                masked_frame_labels.unsqueeze(-1)
            ).view(-1, hidden_size)

            # only compute select tokens to training to speed up.
            hidden_size = text_sequence_output.size(-1)
            # masked_lm_labels = masked_lm_labels.reshape(-1)
            labels_mask = masked_lm_labels != -100

            selected_text_output = text_sequence_output.masked_select(
                labels_mask.unsqueeze(-1)
            ).view(-1, hidden_size)
            mfm_scores, prediction_scores = self.cls(
                selected_video_output,
                target_video_hidden_states,
                non_masked_frame_hidden_states,
                selected_text_output,
            )

        output = (
            mfm_scores,
            prediction_scores,
        ) + outputs
        return output


class BertMFMMLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)
        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(
            config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly
        # resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(
        self,
        video_hidden_states=None,
        target_video_hidden_states=None,
        non_masked_frame_hidden_states=None,
        text_hidden_states=None,
    ):
        video_logits, text_logits = None, None
        if video_hidden_states is not None:
            video_hidden_states = self.transform(video_hidden_states)
            non_masked_frame_logits = torch.mm(
                video_hidden_states,
                non_masked_frame_hidden_states.transpose(1, 0)
            )
            masked_frame_logits = torch.bmm(
                video_hidden_states.unsqueeze(1),
                target_video_hidden_states.unsqueeze(-1),
            ).squeeze(-1)
            video_logits = torch.cat(
                [masked_frame_logits, non_masked_frame_logits], dim=1
            )

        if text_hidden_states is not None:
            text_hidden_states = self.transform(text_hidden_states)
            text_logits = self.decoder(text_hidden_states)
        return video_logits, text_logits


class MFMMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertMFMMLMPredictionHead(config)

    def forward(
        self,
        video_hidden_states=None,
        target_video_hidden_states=None,
        non_masked_frame_hidden_states=None,
        text_hidden_states=None,
    ):
        video_logits, text_logits = self.predictions(
            video_hidden_states,
            target_video_hidden_states,
            non_masked_frame_hidden_states,
            text_hidden_states,
        )
        return video_logits, text_logits


class MMBertForMTM(MMBertForMFMMLM):
    def __init__(self, config):
        BertPreTrainedModel.__init__(self, config)
        self.videomlp = VideoTokenMLP(config)
        self.bert = MMBertModel(config)
        self.cls = MTMHead(config)
        self.hidden_size = config.hidden_size
        self.init_weights()


class BertMTMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)
        self.decoder = nn.Linear(
            config.hidden_size, config.vocab_size, bias=False)

    def forward(
        self,
        video_hidden_states=None,
        target_video_hidden_states=None,
        non_masked_frame_hidden_states=None,
        text_hidden_states=None,
    ):
        non_masked_frame_hidden_states = non_masked_frame_hidden_states.transpose(1, 0)
        video_logits, text_logits = None, None
        if video_hidden_states is not None:
            video_hidden_states = self.transform(video_hidden_states)

            masked_frame_logits = torch.bmm(
                video_hidden_states.unsqueeze(1),
                target_video_hidden_states.unsqueeze(-1),
            ).squeeze(-1)

            non_masked_frame_logits = torch.mm(
                video_hidden_states,
                non_masked_frame_hidden_states
            )
            video_on_vocab_logits = self.decoder(video_hidden_states)
            video_logits = torch.cat([
                masked_frame_logits,
                non_masked_frame_logits,
                video_on_vocab_logits], dim=1)

        if text_hidden_states is not None:
            text_hidden_states = self.transform(text_hidden_states)
            # text first so label does not need to be shifted.
            text_on_vocab_logits = self.decoder(text_hidden_states)
            text_on_video_logits = torch.mm(
                text_hidden_states,
                non_masked_frame_hidden_states
            )
            text_logits = torch.cat([
                text_on_vocab_logits,
                text_on_video_logits
            ], dim=1)

        return video_logits, text_logits


class MTMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertMTMPredictionHead(config)

    def forward(
        self,
        video_hidden_states=None,
        target_video_hidden_states=None,
        non_masked_frame_hidden_states=None,
        text_hidden_states=None,
    ):
        video_logits, text_logits = self.predictions(
            video_hidden_states,
            target_video_hidden_states,
            non_masked_frame_hidden_states,
            text_hidden_states,
        )
        return video_logits, text_logits


class MMBertModel(BertModel):
    """MMBertModel has MMBertEmbedding to support video tokens."""

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        # overwrite embedding
        self.embeddings = MMBertEmbeddings(config)
        self.encoder = MultiLayerAttentionMaskBertEncoder(config)
        self.init_weights()

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        separate_forward_split=None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None
            else self.config.use_return_dict
        )

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids "
                "and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            if input_video_embeds is not None:
                input_shape = (
                    input_ids.size(0),
                    input_ids.size(1) + input_video_embeds.size(1),
                )
            else:
                input_shape = (
                    input_ids.size(0),
                    input_ids.size(1),
                )
        elif inputs_embeds is not None:
            if input_video_embeds is not None:
                input_shape = (
                    inputs_embeds.size(0),
                    inputs_embeds.size(1) + input_video_embeds.size(1),
                )
            else:
                input_shape = (
                    input_ids.size(0),
                    input_ids.size(1),
                )
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None \
            else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(
                input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions
        # [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case
        # we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = \
            self.get_extended_attention_mask(
                attention_mask, input_shape, device)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to
        # [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            (
                encoder_batch_size,
                encoder_sequence_length,
                _,
            ) = encoder_hidden_states.size()
            encoder_hidden_shape = (
                encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(
                    encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(
                encoder_attention_mask
            )
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or
        # [num_hidden_layers x num_heads]
        # and head_mask is converted to shape
        # [num_hidden_layers x batch x num_heads x seq_length x seq_length]

        head_mask = self.get_head_mask(
            head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids,
            input_video_embeds,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        if separate_forward_split is not None:
            split_embedding_output = \
                embedding_output[:, :separate_forward_split]
            split_extended_attention_mask = extended_attention_mask[
                :, :, :, :separate_forward_split, :separate_forward_split
            ]
            split_encoder_outputs = self.encoder(
                split_embedding_output,
                attention_mask=split_extended_attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_extended_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            assert (
                len(split_encoder_outputs) <= 2
            ), "we do not support merge on attention for now."
            encoder_outputs = []
            encoder_outputs.append([split_encoder_outputs[0]])
            if len(split_encoder_outputs) == 2:
                encoder_outputs.append([])
                for _all_hidden_states in split_encoder_outputs[1]:
                    encoder_outputs[-1].append([_all_hidden_states])

            split_embedding_output = \
                embedding_output[:, separate_forward_split:]
            split_extended_attention_mask = extended_attention_mask[
                :, :, :, separate_forward_split:, separate_forward_split:
            ]

            split_encoder_outputs = self.encoder(
                split_embedding_output,
                attention_mask=split_extended_attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_extended_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

            assert (
                len(split_encoder_outputs) <= 2
            ), "we do not support merge on attention for now."
            encoder_outputs[0].append(split_encoder_outputs[0])
            encoder_outputs[0] = torch.cat(encoder_outputs[0], dim=1)
            if len(split_encoder_outputs) == 2:
                for layer_idx, _all_hidden_states in enumerate(
                    split_encoder_outputs[1]
                ):
                    encoder_outputs[1][layer_idx].append(_all_hidden_states)
                    encoder_outputs[1][layer_idx] = torch.cat(
                        encoder_outputs[1][layer_idx], dim=1
                    )
            encoder_outputs = tuple(encoder_outputs)
        else:
            encoder_outputs = self.encoder(
                embedding_output,
                attention_mask=extended_attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_extended_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        sequence_output = encoder_outputs[0]
        pooled_output = (
            self.pooler(sequence_output) if self.pooler is not None else None
        )

        return (sequence_output, pooled_output) + encoder_outputs[1:]

    def get_extended_attention_mask(self, attention_mask, input_shape, device):
        """This is borrowed from `modeling_utils.py` with the support of
        multi-layer attention masks.
        The second dim is expected to be number of layers.
        See `MMAttentionMaskProcessor`.
        Makes broadcastable attention and causal masks so that future
        and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to,
                zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, \
                with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions
        # [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable
        # to all heads.
        if attention_mask.dim() == 4:
            extended_attention_mask = attention_mask[:, :, None, :, :]
            extended_attention_mask = extended_attention_mask.to(
                dtype=self.dtype
            )  # fp16 compatibility
            extended_attention_mask = (1.0 - extended_attention_mask) \
                * -10000.0
            return extended_attention_mask
        else:
            return super().get_extended_attention_mask(
                attention_mask, input_shape, device
            )


class MultiLayerAttentionMaskBertEncoder(BertEncoder):
    """extend BertEncoder with the capability of
    multiple layers of attention mask."""

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            layer_head_mask = head_mask[i] if head_mask is not None else None

            layer_attention_mask = (
                attention_mask[:, i, :, :, :]
                if attention_mask.dim() == 5
                else attention_mask
            )

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    layer_attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    layer_attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        return tuple(
            v
            for v in [hidden_states, all_hidden_states, all_attentions]
            if v is not None
        )