PyTorch
ssl-aasist
custom_code
File size: 48,394 Bytes
29c9ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) Facebook, Inc. All Rights Reserved


import torch

from torch.nn import functional as F

from typing import Optional, Iterable

try:
    from transformers import BertPreTrainedModel
    from transformers.modeling_bert import BertOnlyMLMHead

    from transformers.file_utils import ModelOutput
    from transformers.modeling_outputs import CausalLMOutput
    from transformers.generation_utils import (
        BeamHypotheses,
        top_k_top_p_filtering
    )
except ImportError:
    pass

from .mmfusion import MMFusion
from .transformermodel import MMBertModel
from ..modules import VideoTokenMLP


class MMFusionNLG(MMFusion):
    def __init__(self, config, **kwargs):
        super().__init__(config)
        if config.model.max_decode_length is not None:
            self.max_length = min(
                config.model.max_decode_length,
                config.dataset.max_len - config.dataset.max_video_len - 3
            )
        else:
            self.max_length = \
                config.dataset.max_len - config.dataset.max_video_len - 3
        self.gen_param = config.gen_param if config.gen_param is not None \
            else {}

    def forward(
        self,
        caps,
        cmasks,
        vfeats,
        vmasks,
        attention_mask,
        video_label=None,
        text_label=None,
        **kwargs
    ):
        """use pre-trained LM header for generation."""
        attention_mask, token_type_ids = self._mm_on_the_fly(
            cmasks, vmasks, attention_mask)

        outputs = self.mm_encoder(
            input_ids=caps,
            input_video_embeds=vfeats,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            masked_lm_labels=text_label,
        )
        return {"logits": outputs[0]}

    @torch.no_grad()
    def generate(
        self,
        caps, cmasks, vfeats, vmasks,
        attention_mask=None,
        bos_token_id=None,
        eos_token_id=None,
        **kwargs
    ):
        # a simplified interface from
        # https://huggingface.co/transformers/v3.4.0/_modules/transformers/generation_utils.html#GenerationMixin.generate

        # caps now only have
        # [CLS], [SEP] (for video) and [CLS] (as bos_token)
        assert caps.size(1) == 3

        attention_mask, token_type_ids = self._mm_on_the_fly(
            cmasks, vmasks, attention_mask)

        output = self.mm_encoder.generate(
            input_ids=caps,
            input_video_embeds=vfeats,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            max_length=self.max_length,
            **self.gen_param
        )
        return output


class MMBertForNLG(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.bert = MMBertModel(config)
        self.videomlp = VideoTokenMLP(config)
        # we do not use `BertGenerationOnlyLMHead`
        # because we can reuse pretraining.
        self.cls = BertOnlyMLMHead(config)
        self.hidden_size = config.hidden_size
        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def forward(
        self,
        input_ids=None,
        input_video_embeds=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        # similar to MMBertForMFMMLM without MFM.
        video_tokens = self.videomlp(input_video_embeds)
        outputs = self.bert(
            input_ids,
            video_tokens,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        prediction_scores = None
        if masked_lm_labels is not None:
            text_offset = input_video_embeds.size(1) + 1  # [CLS]
            # recover caps format: [CLS] [SEP] text [SEP]
            text_sequence_output = torch.cat(
                [sequence_output[:, :1], sequence_output[:, text_offset:]],
                dim=1
            )

            # only compute select tokens to training to speed up.
            hidden_size = text_sequence_output.size(-1)
            # masked_lm_labels = masked_lm_labels.reshape(-1)
            labels_mask = masked_lm_labels != -100

            selected_text_output = text_sequence_output.masked_select(
                labels_mask.unsqueeze(-1)
            ).view(-1, hidden_size)
            prediction_scores = self.cls(selected_text_output)

        if not return_dict:
            output = (
                prediction_scores,
            ) + outputs[2:]
            return output

        # for generation.
        text_offset = input_video_embeds.size(1) + 2  # [CLS]
        text_sequence_output = sequence_output[:, text_offset:]
        prediction_scores = self.cls(text_sequence_output)
        return CausalLMOutput(
            loss=None,
            logits=prediction_scores,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        input_video_embeds,
        attention_mask=None,
        token_type_ids=None,
        **model_kwargs
    ):
        # must return a dictionary.
        seq_len = input_ids.size(1) + input_video_embeds.size(1)
        if attention_mask is not None:
            if len(attention_mask.size()) == 4:
                attention_mask = attention_mask[:, :, :seq_len, :seq_len]
            elif len(attention_mask.size()) == 3:
                attention_mask = attention_mask[:, :seq_len, :seq_len]
            else:
                attention_mask = attention_mask[:, :seq_len]
        if token_type_ids is not None:
            token_type_ids = token_type_ids[:, :seq_len]

        return {
            "input_ids": input_ids,
            "input_video_embeds": input_video_embeds,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        max_length: Optional[int] = None,
        min_length: Optional[int] = None,
        do_sample: Optional[bool] = None,
        early_stopping: Optional[bool] = None,
        num_beams: Optional[int] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        repetition_penalty: Optional[float] = None,
        bad_words_ids: Optional[Iterable[int]] = None,
        bos_token_id: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        length_penalty: Optional[float] = None,
        no_repeat_ngram_size: Optional[int] = None,
        num_return_sequences: Optional[int] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        decoder_start_token_id: Optional[int] = None,
        use_cache: Optional[bool] = None,
        **model_kwargs
    ) -> torch.LongTensor:
        r"""
        Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
        beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.
        Adapted in part from `Facebook's XLM beam search code
        <https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__.
        Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the
        attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values
        indicated are the default values of those config.
        Most of these parameters are explained in more detail in `this blog post
        <https://huggingface.co/blog/how-to-generate>`__.
        Parameters:
            input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
                The sequence used as a prompt for the generation. If :obj:`None` the method initializes
                it as an empty :obj:`torch.LongTensor` of shape :obj:`(1,)`.
            decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
                initial input_ids for the decoder of encoder-decoder type models. If :obj:`None` then only
                decoder_start_token_id is passed as the first token to the decoder.
            max_length (:obj:`int`, `optional`, defaults to 20):
                The maximum length of the sequence to be generated.
            min_length (:obj:`int`, `optional`, defaults to 10):
                The minimum length of the sequence to be generated.
            do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
            early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
            num_beams (:obj:`int`, `optional`, defaults to 1):
                Number of beams for beam search. 1 means no beam search.
            temperature (:obj:`float`, `optional`, defaults tp 1.0):
                The value used to module the next token probabilities.
            top_k (:obj:`int`, `optional`, defaults to 50):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (:obj:`float`, `optional`, defaults to 1.0):
                If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or
                higher are kept for generation.
            repetition_penalty (:obj:`float`, `optional`, defaults to 1.0):
                The parameter for repetition penalty. 1.0 means no penalty. See `this paper
                <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
            pad_token_id (:obj:`int`, `optional`):
                The id of the `padding` token.
            bos_token_id (:obj:`int`, `optional`):
                The id of the `beginning-of-sequence` token.
            eos_token_id (:obj:`int`, `optional`):
                The id of the `end-of-sequence` token.
            length_penalty (:obj:`float`, `optional`, defaults to 1.0):
                Exponential penalty to the length. 1.0 means no penalty.
                Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in
                order to encourage the model to produce longer sequences.
            no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
                If set to int > 0, all ngrams of that size can only occur once.
            bad_words_ids(:obj:`List[int]`, `optional`):
                List of token ids that are not allowed to be generated. In order to get the tokens of the words that
                should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`.
            num_return_sequences(:obj:`int`, `optional`, defaults to 1):
                The number of independently computed returned sequences for each element in the batch.
            attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
                Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for
                tokens that are not masked, and 0 for masked tokens.
                If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token.
                `What are attention masks? <../glossary.html#attention-mask>`__
            decoder_start_token_id (:obj:`int`, `optional`):
                If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
            use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not the model should use the past last key/values attentions (if applicable to the model) to
                speed up decoding.
            model_kwargs:
                Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
        Return:
            :obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`:
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        Examples::
            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            outputs = model.generate(max_length=40)  # do greedy decoding
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('openai-gpt')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('openai-gpt')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5)  # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
            for i in range(3): #  3 output sequences were generated
                print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True)  # generate 3 candidates using sampling
            for i in range(3): #  3 output sequences were generated
                print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('ctrl')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('ctrl')    # Download model and configuration from S3 and cache.
            input_context = 'Legal My neighbor is'  # "Legal" is one of the control codes for ctrl
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2)  # generate sequences
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
            tokenizer = AutoTokenizer.from_pretrained('gpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('gpt2')    # Download model and configuration from S3 and cache.
            input_context = 'My cute dog'  # "Legal" is one of the control codes for ctrl
            bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
            input_ids = tokenizer.encode(input_context, return_tensors='pt')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids)  # generate sequences without allowing bad_words to be generated
        """

        # We cannot generate if the model does not have a LM head
        if self.get_output_embeddings() is None:
            raise AttributeError(
                "You tried to generate sequences with a model that does not have a LM Head."
                "Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )"
            )

        max_length = max_length if max_length is not None else self.config.max_length
        min_length = min_length if min_length is not None else self.config.min_length
        do_sample = do_sample if do_sample is not None else self.config.do_sample
        early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        num_beams = num_beams if num_beams is not None else self.config.num_beams
        temperature = temperature if temperature is not None else self.config.temperature
        top_k = top_k if top_k is not None else self.config.top_k
        top_p = top_p if top_p is not None else self.config.top_p
        repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
        length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
        no_repeat_ngram_size = (
            no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
        )
        bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
        decoder_start_token_id = (
            decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
        )

        if input_ids is not None:
            batch_size = input_ids.shape[0]  # overriden by the input batch_size
        else:
            batch_size = 1

        assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
        assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
        assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
        assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
        assert isinstance(use_cache, bool), "`use_cache` should be a boolean."
        assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
        assert temperature > 0, "`temperature` should be strictly positive."
        assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
        assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
        assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
        assert input_ids is not None or (
            isinstance(bos_token_id, int) and bos_token_id >= 0
        ), "If input_ids is not defined, `bos_token_id` should be a positive integer."
        assert pad_token_id is None or (
            isinstance(pad_token_id, int) and (pad_token_id >= 0)
        ), "`pad_token_id` should be a positive integer."
        assert (eos_token_id is None) or (
            isinstance(eos_token_id, int) and (eos_token_id >= 0)
        ), "`eos_token_id` should be a positive integer."
        assert length_penalty > 0, "`length_penalty` should be strictly positive."
        assert (
            isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0
        ), "`no_repeat_ngram_size` should be a positive integer."
        assert (
            isinstance(num_return_sequences, int) and num_return_sequences > 0
        ), "`num_return_sequences` should be a strictly positive integer."
        assert (
            bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
        ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"

        if input_ids is None:
            assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
                "you should either supply a context to complete as `input_ids` input "
                "or a `bos_token_id` (integer >= 0) as a first token to start the generation."
            )
            input_ids = torch.full(
                (batch_size, 1),
                bos_token_id,
                dtype=torch.long,
                device=next(self.parameters()).device,
            )
        else:
            assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."

        # not allow to duplicate outputs when greedy decoding
        if do_sample is False:
            if num_beams == 1:
                # no_beam_search greedy generation conditions
                assert (
                    num_return_sequences == 1
                ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"

            else:
                # beam_search greedy generation conditions
                assert (
                    num_beams >= num_return_sequences
                ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"

        # create attention mask if necessary
        # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
        if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids):
            attention_mask = input_ids.ne(pad_token_id).long()
        elif attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

        # set pad_token_id to eos_token_id if not set. Important that this is done after
        # attention_mask is created
        if pad_token_id is None and eos_token_id is not None:
            print(
                "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id)
            )
            pad_token_id = eos_token_id

        # vocab size
        if hasattr(self.config, "vocab_size"):
            vocab_size = self.config.vocab_size
        elif (
            self.config.is_encoder_decoder
            and hasattr(self.config, "decoder")
            and hasattr(self.config.decoder, "vocab_size")
        ):
            vocab_size = self.config.decoder.vocab_size
        else:
            raise ValueError("either self.config.vocab_size or self.config.decoder.vocab_size needs to be defined")

        # set effective batch size and effective batch multiplier according to do_sample
        if do_sample:
            effective_batch_size = batch_size * num_return_sequences
            effective_batch_mult = num_return_sequences
        else:
            effective_batch_size = batch_size
            effective_batch_mult = 1

        if self.config.is_encoder_decoder:
            if decoder_start_token_id is None:
                # see if BOS token can be used for decoder_start_token_id
                if bos_token_id is not None:
                    decoder_start_token_id = bos_token_id
                elif (
                    hasattr(self.config, "decoder")
                    and hasattr(self.config.decoder, "bos_token_id")
                    and self.config.decoder.bos_token_id is not None
                ):
                    decoder_start_token_id = self.config.decoder.bos_token_id
                else:
                    raise ValueError(
                        "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
                    )

            assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self)
            assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder)

            # get encoder and store encoder outputs
            encoder = self.get_encoder()
            encoder_outputs: ModelOutput = encoder(input_ids, attention_mask=attention_mask, return_dict=True)

        # Expand input ids if num_beams > 1 or num_return_sequences > 1
        if num_return_sequences > 1 or num_beams > 1:
            # TODO: make this a call-back function.
            # input_ids=caps,
            # input_video_embeds=vfeats,
            # attention_mask=attention_mask,
            # token_type_ids=token_type_ids,
            input_video_embeds = model_kwargs.pop("input_video_embeds", None)
            token_type_ids = model_kwargs.pop("token_type_ids", None)

            input_ids_len = input_ids.shape[-1]
            input_ids = input_ids.unsqueeze(1).expand(
                 batch_size, effective_batch_mult * num_beams, input_ids_len)

            input_video_embeds_len, input_video_embeds_hidden = input_video_embeds.size(1), input_video_embeds.size(2)
            input_video_embeds = input_video_embeds.unsqueeze(1).expand(
                batch_size, effective_batch_mult * num_beams, input_video_embeds_len, input_video_embeds_hidden)

            attention_mask_from_len, attention_mask_to_len = attention_mask.size(1), attention_mask.size(2)
            attention_mask = attention_mask.unsqueeze(1).expand(
                batch_size, effective_batch_mult * num_beams, attention_mask_from_len, attention_mask_to_len
            )

            token_type_ids_len = token_type_ids.size(1)
            token_type_ids = token_type_ids.unsqueeze(1).expand(
                batch_size, effective_batch_mult * num_beams, token_type_ids_len
            )

            # contiguous ...
            input_ids = input_ids.contiguous().view(
                effective_batch_size * num_beams, input_ids_len
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)

            input_video_embeds = input_video_embeds.contiguous().view(
                effective_batch_size * num_beams, input_video_embeds_len, input_video_embeds_hidden)

            attention_mask = attention_mask.contiguous().view(
                effective_batch_size * num_beams, attention_mask_from_len, attention_mask_to_len
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)

            token_type_ids = token_type_ids.contiguous().view(
                effective_batch_size * num_beams, token_type_ids_len
            )

            model_kwargs["input_video_embeds"] = input_video_embeds
            model_kwargs["token_type_ids"] = token_type_ids

        if self.config.is_encoder_decoder:
            device = next(self.parameters()).device
            if decoder_input_ids is not None:
                # give initial decoder input ids
                input_ids = decoder_input_ids.repeat(effective_batch_size * num_beams, 1).to(device)
            else:
                # create empty decoder input_ids
                input_ids = torch.full(
                    (effective_batch_size * num_beams, 1),
                    decoder_start_token_id,
                    dtype=torch.long,
                    device=device,
                )
            cur_len = input_ids.shape[-1]

            assert (
                batch_size == encoder_outputs.last_hidden_state.shape[0]
            ), f"expected encoder_outputs.last_hidden_state to have 1st dimension bs={batch_size}, got {encoder_outputs.last_hidden_state.shape[0]} "

            # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
            expanded_batch_idxs = (
                torch.arange(batch_size)
                .view(-1, 1)
                .repeat(1, num_beams * effective_batch_mult)
                .view(-1)
                .to(input_ids.device)
            )

            # expand encoder_outputs
            encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
                0, expanded_batch_idxs
            )

            # save encoder_outputs in `model_kwargs`
            model_kwargs["encoder_outputs"] = encoder_outputs

        else:
            cur_len = input_ids.shape[-1]

        assert (
            cur_len < max_length
        ), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"

        if num_beams > 1:
            output = self._generate_beam_search(
                input_ids,
                cur_len=cur_len,
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                early_stopping=early_stopping,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                batch_size=effective_batch_size,
                num_return_sequences=num_return_sequences,
                length_penalty=length_penalty,
                num_beams=num_beams,
                vocab_size=vocab_size,
                attention_mask=attention_mask,
                use_cache=use_cache,
                model_kwargs=model_kwargs,
            )
        else:
            output = self._generate_no_beam_search(
                input_ids,
                cur_len=cur_len,
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                batch_size=effective_batch_size,
                attention_mask=attention_mask,
                use_cache=use_cache,
                model_kwargs=model_kwargs,
            )

        return output

    def _generate_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        early_stopping,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        num_return_sequences,
        length_penalty,
        num_beams,
        vocab_size,
        attention_mask,
        use_cache,
        model_kwargs,
    ):
        """Generate sequences for each example with beam search."""

        # generated hypotheses
        generated_hyps = [
            BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping)
            for _ in range(batch_size)
        ]

        # scores for each sentence in the beam
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)

        # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times
        if do_sample is False:
            beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view(-1)  # shape (batch_size * num_beams,)

        # cache compute states
        past = None

        # done sentences
        done = [False for _ in range(batch_size)]

        while cur_len < max_length:
            model_inputs = self.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
            )
            outputs = self(**model_inputs, return_dict=True)  # (batch_size * num_beams, cur_len, vocab_size)
            next_token_logits = outputs.logits[:, -1, :]  # (batch_size * num_beams, vocab_size)

            # if model has past, then set the past variable to speed up decoding
            if "past_key_values" in outputs:
                past = outputs.past_key_values
            elif "mems" in outputs:
                past = outputs.mems

            if self.config.is_encoder_decoder and do_sample is False:
                # TODO (PVP) still a bit hacky here - there might be a better solution
                next_token_logits = self.adjust_logits_during_generation(
                    next_token_logits, cur_len=cur_len, max_length=max_length
                )

            scores = F.log_softmax(next_token_logits, dim=-1)  # (batch_size * num_beams, vocab_size)

            scores = self.postprocess_next_token_scores(
                scores=scores,
                input_ids=input_ids,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                cur_len=cur_len,
                min_length=min_length,
                max_length=max_length,
                eos_token_id=eos_token_id,
                repetition_penalty=repetition_penalty,
                batch_size=batch_size,
                num_beams=num_beams,
            )

            assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format(
                scores.shape, (batch_size * num_beams, vocab_size)
            )

            if do_sample:
                _scores = scores + beam_scores[:, None].expand_as(scores)  # (batch_size * num_beams, vocab_size)
                # Temperature
                if temperature != 1.0:
                    _scores = _scores / temperature
                # Top-p/top-k filtering
                _scores = top_k_top_p_filtering(
                    _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2
                )  # (batch_size * num_beams, vocab_size)
                # re-organize to group the beam together to sample from all beam_idxs
                _scores = _scores.contiguous().view(
                    batch_size, num_beams * vocab_size
                )  # (batch_size, num_beams * vocab_size)

                # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
                probs = F.softmax(_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)  # (batch_size, num_beams * 2)
                # Compute next scores
                next_scores = torch.gather(_scores, -1, next_tokens)  # (batch_size, num_beams * 2)
                # sort the sampled vector to make sure that the first num_beams samples are the best
                next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1)
                next_tokens = torch.gather(next_tokens, -1, next_scores_indices)  # (batch_size, num_beams * 2)

            else:
                next_scores = scores + beam_scores[:, None].expand_as(scores)  # (batch_size * num_beams, vocab_size)

                # re-organize to group the beam together (we are keeping top hypothesis accross beams)
                next_scores = next_scores.view(
                    batch_size, num_beams * vocab_size
                )  # (batch_size, num_beams * vocab_size)

                next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True)

            assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams)

            # next batch beam content
            next_batch_beam = []

            # for each sentence
            for batch_idx in range(batch_size):

                # if we are done with this sentence, add a pad token
                if done[batch_idx]:
                    assert (
                        len(generated_hyps[batch_idx]) >= num_beams
                    ), "Batch can only be done if at least {} beams have been generated".format(num_beams)
                    assert (
                        eos_token_id is not None and pad_token_id is not None
                    ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
                    next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams)  # pad the batch
                    continue

                # next sentence beam content, this will get added to next_batch_beam
                next_sent_beam = []

                # next tokens for this sentence
                for beam_token_rank, (beam_token_id, beam_token_score) in enumerate(
                    zip(next_tokens[batch_idx], next_scores[batch_idx])
                ):
                    # get beam and token IDs
                    beam_id = beam_token_id // vocab_size
                    token_id = beam_token_id % vocab_size

                    effective_beam_id = batch_idx * num_beams + beam_id
                    # add to generated hypotheses if end of sentence
                    if (eos_token_id is not None) and (token_id.item() == eos_token_id):
                        # if beam_token does not belong to top num_beams tokens, it should not be added
                        is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams
                        if is_beam_token_worse_than_top_num_beams:
                            continue
                        generated_hyps[batch_idx].add(
                            input_ids[effective_beam_id].clone(),
                            beam_token_score.item(),
                        )
                    else:
                        # add next predicted token since it is not eos_token
                        next_sent_beam.append((beam_token_score, token_id, effective_beam_id))

                    # once the beam for next step is full, don't add more tokens to it.
                    if len(next_sent_beam) == num_beams:
                        break

                # Check if we are done so that we can save a pad step if all(done)
                done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done(
                    next_scores[batch_idx].max().item(), cur_len
                )

                # update next beam content
                assert len(next_sent_beam) == num_beams, "Beam should always be full"
                next_batch_beam.extend(next_sent_beam)
                assert len(next_batch_beam) == num_beams * (batch_idx + 1), "We should have added num_beams each step"

            # stop when we are done with each sentence
            if all(done):
                break

            # sanity check / prepare next batch
            assert len(next_batch_beam) == batch_size * num_beams
            beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
            beam_tokens = input_ids.new([x[1] for x in next_batch_beam])
            beam_idx = input_ids.new([x[2] for x in next_batch_beam])

            # re-order batch and update current length
            input_ids = input_ids[beam_idx, :]
            input_ids = torch.cat([input_ids, beam_tokens.unsqueeze(1)], dim=-1)
            cur_len = cur_len + 1

            # re-order internal states
            if past is not None:
                past = self._reorder_cache(past, beam_idx)

            # extend attention_mask for new generated input if only decoder
            # (huxu): move out since we trim attention_mask by ourselves.
            # if self.config.is_encoder_decoder is False:
            #    attention_mask = torch.cat(
            #        [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
            #    )

        # finalize all open beam hypotheses and add to generated hypotheses
        for batch_idx in range(batch_size):
            if done[batch_idx]:
                continue

            # test that beam scores match previously calculated scores if not eos and batch_idx not done
            if eos_token_id is not None and all(
                (token_id % vocab_size).item() != eos_token_id for token_id in next_tokens[batch_idx]
            ):
                assert torch.all(
                    next_scores[batch_idx, :num_beams] == beam_scores.view(batch_size, num_beams)[batch_idx]
                ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format(
                    next_scores[:, :num_beams][batch_idx],
                    beam_scores.view(batch_size, num_beams)[batch_idx],
                )

            # need to add best num_beams hypotheses to generated hyps
            for beam_id in range(num_beams):
                effective_beam_id = batch_idx * num_beams + beam_id
                final_score = beam_scores[effective_beam_id].item()
                final_tokens = input_ids[effective_beam_id]
                generated_hyps[batch_idx].add(final_tokens, final_score)

        # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch
        output_batch_size = batch_size if do_sample else batch_size * num_return_sequences
        output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences

        # select the best hypotheses
        sent_lengths = input_ids.new(output_batch_size)
        best = []

        # retrieve best hypotheses
        for i, hypotheses in enumerate(generated_hyps):
            sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0])
            for j in range(output_num_return_sequences_per_batch):
                effective_batch_idx = output_num_return_sequences_per_batch * i + j
                best_hyp = sorted_hyps.pop()[1]
                sent_lengths[effective_batch_idx] = len(best_hyp)
                best.append(best_hyp)

        # prepare for adding eos
        sent_max_len = min(sent_lengths.max().item() + 1, max_length)
        decoded = input_ids.new(output_batch_size, sent_max_len)
        # shorter batches are padded if needed
        if sent_lengths.min().item() != sent_lengths.max().item():
            assert pad_token_id is not None, "`pad_token_id` has to be defined"
            decoded.fill_(pad_token_id)

        # fill with hypotheses and eos_token_id if the latter fits in
        for i, hypo in enumerate(best):
            decoded[i, : sent_lengths[i]] = hypo
            if sent_lengths[i] < max_length:
                decoded[i, sent_lengths[i]] = eos_token_id

        return decoded

    def _generate_no_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        attention_mask,
        use_cache,
        model_kwargs,
    ):
        """Generate sequences for each example without beam search (num_beams == 1).
        All returned sequence are generated independantly.
        """
        # length of generated sentences / unfinished sentences
        unfinished_sents = input_ids.new(batch_size).fill_(1)
        sent_lengths = input_ids.new(batch_size).fill_(max_length)

        past = None
        while cur_len < max_length:
            model_inputs = self.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
            )

            outputs = self(**model_inputs, return_dict=True)
            next_token_logits = outputs.logits[:, -1, :]
            scores = self.postprocess_next_token_scores(
                scores=next_token_logits,
                input_ids=input_ids,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                cur_len=cur_len,
                min_length=min_length,
                max_length=max_length,
                eos_token_id=eos_token_id,
                repetition_penalty=repetition_penalty,
                batch_size=batch_size,
                num_beams=1,
            )

            # if model has past, then set the past variable to speed up decoding
            if "past_key_values" in outputs:
                past = outputs.past_key_values
            elif "mems" in outputs:
                past = outputs.mems

            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
                if temperature != 1.0:
                    scores = scores / temperature
                # Top-p/top-k filtering
                next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
                # Sample
                probs = F.softmax(next_token_logscores, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                # Greedy decoding
                next_token = torch.argmax(next_token_logits, dim=-1)
            
                # print(next_token_logits[0,next_token[0]], next_token_logits[0,eos_token_id])

            # update generations and finished sentences
            if eos_token_id is not None:
                # pad finished sentences if eos_token_id exist
                tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
            else:
                tokens_to_add = next_token

            # add token and increase length by one
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
            cur_len = cur_len + 1

            if eos_token_id is not None:
                eos_in_sents = tokens_to_add == eos_token_id
                # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
                is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
                sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
                # unfinished_sents is set to zero if eos in sentence
                unfinished_sents.mul_((~eos_in_sents).long())

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break
            
            
            # extend attention_mask for new generated input if only decoder
            # if self.config.is_encoder_decoder is False:
            #     attention_mask = torch.cat(
            #         [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
            #     )

        return input_ids