PyTorch
ssl-aasist
custom_code
File size: 7,071 Bytes
9742bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from fairseq.data.text_compressor import TextCompressionLevel, TextCompressor
from fairseq import checkpoint_utils, distributed_utils, options, utils
from fairseq import checkpoint_utils, data, options, tasks
from fairseq.data import FileAudioDataset, AddTargetDataset, Dictionary
from fairseq.tasks.audio_classification import LabelEncoder
import copy
from tqdm import tqdm
import tempfile
import numpy as np
import json

    
def subset_manifest(infer_manifest, veri_pair):
    with open(infer_manifest) as ff, open(veri_pair) as gg, tempfile.NamedTemporaryFile(
        "w", delete=False
    ) as ww:
        fnames = ff.read().strip().split("\n")
        basedir = fnames[0]
        needed_fname = []
        for gi in gg.read().strip().split("\n"):
            _, x1, x2 = gi.split()
            needed_fname.append(x1)
            needed_fname.append(x2)
        needed_fname = set(needed_fname)

        ww.write(basedir + "\n")
        for ii in range(1, len(fnames)):
            x1, x2 = fnames[ii].split()
            if x1 in needed_fname:
                ww.write(fnames[ii] + "\n")
    print(f"| subset manifest for verification: {ww.name}")
    return ww.name


def wrap_target_dataset(infer_manifest, dataset, task):
    label_path = infer_manifest.replace(".tsv", ".lang")
    text_compressor = TextCompressor(level=TextCompressionLevel.none)
    with open(label_path, "r") as f:
        labels = [text_compressor.compress(l) for i,l in enumerate(f)]
        assert len(labels) == len(dataset)
        
    process_label = LabelEncoder(task.target_dictionary)
    dataset = AddTargetDataset(
        dataset,
        labels,
        pad=task.target_dictionary.pad(),
        eos=task.target_dictionary.eos(),
        batch_targets=True,
        process_label=process_label,
        add_to_input=False,
    )
    return dataset


def resample_data(source, padding_mask, n_sample, max_sample_len):
    # source: BxT
    # padding_mask: BxT
    B = source.shape[0]
    T = source.shape[1]
    sources = []
    padding_masks = []
    if B == 1:
        return [source], [None]
    seq_len = (~padding_mask).sum(1)
    for jj in range(n_sample):
        new_source = source.new_zeros(B, max_sample_len)
        new_padding_mask = padding_mask.new_zeros(B, max_sample_len)
        for ii in range(B):
            if seq_len[ii] > max_sample_len:
                start = np.random.randint(0, seq_len[ii] - max_sample_len + 1)
                end = start + max_sample_len
            else:
                start = 0
                end = seq_len[ii]
            new_source[ii, 0 : end - start] = source[ii, start:end]
            new_padding_mask[ii, end - start + 1 :] = True
        sources.append(new_source)
        padding_masks.append(new_padding_mask)
    return sources, padding_masks


def resample_sample(sample, n_sample, max_sample_len):
    new_sources, new_padding_masks = resample_data(
        sample["net_input"]["source"],
        sample["net_input"]["padding_mask"],
        n_sample,
        max_sample_len,
    )
    new_samples = []
    for ii in range(n_sample):
        new_sample = copy.deepcopy(sample)
        new_sample["net_input"]["source"] = new_sources[ii]
        new_sample["net_input"]["padding_mask"] = new_padding_masks[ii]
        new_samples.append(new_sample)
    return new_samples


def dict_to_nparr(dd):
    dict_class = []
    dict_idx = []
    for ii, jj in enumerate(dd.symbols):
        dict_idx.append(ii)
        dict_class.append(jj)
    dict_idx = np.array(dict_idx)
    dict_class = np.array(dict_class)
    return dict_class, dict_idx


if __name__ == "__main__":
    np.random.seed(123)
    # Parse command-line arguments for generation
    parser = options.get_generation_parser(default_task="audio_classification")
    # parser.add_argument('--infer-merge', type=str, default='mean')
    parser.add_argument("--infer-xtimes", type=int, default=1)
    parser.add_argument("--infer-num-samples", type=int, default=None)
    parser.add_argument("--top-k", type=int, default=3)
    parser.add_argument(
        "--infer-max-sample-size", type=int, default=5 * 16000
    )  # 5 secs
    parser.add_argument("--infer-manifest", required=True, type=str)
    parser.add_argument("--output-path", default="/tmp/", type=str)

    args = options.parse_args_and_arch(parser)
    # Setup task
    # task = tasks.setup_task(args)
    use_cuda = not args.cpu

    # Load model & task
    print("| loading model from {}".format(args.path))
    arg_overrides = {
        "task": {
            "data": args.data
        },
        # 'mask_prob': 0
        #'max_sample_size': sys.maxsize,
        #'min_sample_size': 0,
    }
    state = checkpoint_utils.load_checkpoint_to_cpu(args.path, arg_overrides)

    models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task(
        [args.path], arg_overrides=arg_overrides, task=None, state=state
    )
    model = models[0]
    model.eval()
    if use_cuda:
        model.cuda()
    # Load dataset

    dict_class, dict_idx = dict_to_nparr(task.target_dictionary)

    infer_manifest = args.infer_manifest
    infer_dataset = FileAudioDataset(
        infer_manifest,
        sample_rate=task.cfg.sample_rate,
        max_sample_size=10**10,  # task.cfg.max_sample_size,
        min_sample_size=1,  # task.cfg.min_sample_size,
        pad=True,
        normalize=task.cfg.normalize,
    )
    # add target (if needed)
    infer_dataset = wrap_target_dataset(infer_manifest, infer_dataset, task)

    itr = task.get_batch_iterator(
        dataset=infer_dataset,
        max_sentences=1,
        # max_tokens=args.max_tokens,
        num_workers=4,
    ).next_epoch_itr(shuffle=False)
    predictions = {}
    with torch.no_grad():
        for _, sample in tqdm(enumerate(itr)):
            # resample if needed
            samples = resample_sample(
                sample, args.infer_xtimes, args.infer_max_sample_size
            )
            for sample in samples:
                sample = utils.move_to_cuda(sample) if use_cuda else sample
                try:
                    latent = model.forward_latent(**sample["net_input"])
                except:
                    latent = None
                logit = model.forward(**sample["net_input"])
                logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
                scores, indices  = torch.topk(logit_lsm, args.top_k, dim=-1)
                scores = torch.exp(scores).to("cpu").tolist()
                indices = indices.to("cpu").tolist()
                assert sample["id"].numel() == 1
                sample_idx = sample["id"].to("cpu").tolist()[0]
                assert sample_idx not in predictions
                predictions[sample_idx] = [(task.target_dictionary[int(i)], s) for s, i in zip(scores, indices)]

    with open(f"{args.output_path}/predictions.txt", "w") as fo:
        for idx in range(len(infer_dataset)):
            fo.write(json.dumps(predictions[idx]) + "\n")

    print(f"Outputs will be located at - {args.output_path}/predictions.txt")