--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base-960h datasets: - audiofolder model-index: - name: wav2vec2-base-960h_SER_merged_dataset results: [] --- # wav2vec2-base-960h_SER_merged_dataset This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on a merged dataset of RAVDESS, CREMA, SAVEE, and TESS. It achieves the following results on the evaluation set: - eval_accuracy: 0.7480 - eval_loss: 0.7940 - eval_weighted_f1: 0.7438 - eval_micro_f1: 0.7480 - eval_macro_f1: 0.7559 - eval_weighted_recall: 0.7480 - eval_micro_recall: 0.7480 - eval_macro_recall: 0.7622 - eval_weighted_precision: 0.7518 - eval_micro_precision: 0.7480 - eval_macro_precision: 0.7609 - eval_runtime: 82.1913 - eval_samples_per_second: 29.602 - eval_steps_per_second: 0.937 - epoch: 14.0 - step: 1078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0