--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer model-index: - name: RoBERTa-lifescience-domain results: [] --- # RoBERTa-lifescience-domain This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Model Preparation Time: 0.0035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:-----:|:----:|:---------------:|:----------------------:| | No log | 1.0 | 80 | 1.0417 | 0.0035 | | No log | 2.0 | 160 | 1.0000 | 0.0035 | | No log | 3.0 | 240 | 0.9877 | 0.0035 | | 0.9263 | 4.0 | 320 | 0.9724 | 0.0035 | | 0.9263 | 5.0 | 400 | 0.9860 | 0.0035 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1