--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: RoBERTa-finetuned-hotel-reviews-sentiment-analysis results: [] --- # RoBERTa-finetuned-hotel-reviews-sentiment-analysis This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0302 - Accuracy: 0.6897 - F1: 0.6440 - Precision: 0.6477 - Recall: 0.6406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 175 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9111 | 1.0 | 513 | 0.7323 | 0.6824 | 0.6337 | 0.6216 | 0.6508 | | 0.671 | 2.0 | 1026 | 0.7124 | 0.6868 | 0.6362 | 0.6513 | 0.6288 | | 0.5637 | 3.0 | 1539 | 0.7307 | 0.7007 | 0.6401 | 0.6548 | 0.6312 | | 0.4554 | 4.0 | 2052 | 0.8162 | 0.6946 | 0.6431 | 0.6396 | 0.6501 | | 0.344 | 5.0 | 2565 | 0.9359 | 0.6919 | 0.6424 | 0.6511 | 0.6374 | | 0.2628 | 6.0 | 3078 | 1.0302 | 0.6897 | 0.6440 | 0.6477 | 0.6406 | ### Framework versions - Transformers 4.54.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.2