--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-small-nvidia results: [] --- # flan-t5-small-nvidia Imported from Kaggle (https://www.kaggle.com/datasets/gondimalladeepesh/nvidia-documentation-question-and-answer-pairs) Q&A dataset for LLM finetuning about the NVIDIA about SDKs and blogs This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) trained on [ajsbsd/datasets/nvidia-qa](https://huggingface.co/datasets/ajsbsd/nvidia-qa) It achieves the following results on the evaluation set: - Loss: 2.0857 - Rouge1: 0.3970 - Rouge2: 0.2295 - Rougel: 0.3537 - Rougelsum: 0.3593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.8569 | 1.0 | 711 | 2.3454 | 0.3748 | 0.2036 | 0.3321 | 0.3375 | | 2.5034 | 2.0 | 1422 | 2.2079 | 0.3841 | 0.2143 | 0.3417 | 0.3465 | | 2.1886 | 3.0 | 2133 | 2.1342 | 0.3900 | 0.2227 | 0.3494 | 0.3543 | | 2.0784 | 4.0 | 2844 | 2.0972 | 0.3951 | 0.2267 | 0.3522 | 0.3571 | | 1.9843 | 5.0 | 3555 | 2.0857 | 0.3970 | 0.2295 | 0.3537 | 0.3593 | ### Framework versions - Transformers 4.35.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1