File size: 1,534 Bytes
9660cb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
datasets:
- KLUE-MRC
license: cc-by-sa-4.0
---
# bert-base for QA
NOTE: You can try the model through the [Ainize DEMO](https://main-klue-mrc-bert-scy6500.endpoint.ainize.ai/), and you can call the api through the [Ainize API](https://ainize.ai/scy6500/KLUE-MRC-BERT?branch=main).
## Overview
**Language model:** klue/bert-base
**Language:** Korean
**Downstream-task:** Extractive QA
**Training data:** KLUE-MRC
**Eval data:** KLUE-MRC
**Code:** See [Ainize Workspace]()
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("./mrc-bert-base")
model = AutoModelForQuestionAnswering.from_pretrained("./mrc-bert-base")
context = "your context"
question = "your question"
encodings = tokenizer(context, question, max_length=512, truncation=True,
padding="max_length", return_token_type_ids=False)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
pred = model(input_ids, attention_mask=attention_mask)
start_logits, end_logits = pred.start_logits, pred.end_logits
token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1)
pred_ids = input_ids[0][token_start_index: token_end_index + 1]
prediction = tokenizer.decode(pred_ids)
```
## About us
[Teachable NLP](https://ainize.ai/teachable-nlp) - Train NLP models with your own text without writing any code
[Ainize](https://ainize.ai/) - Deploy ML project using free gpu
|