File size: 1,534 Bytes
9660cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
datasets:
- KLUE-MRC
license: cc-by-sa-4.0
---

# bert-base for QA 
NOTE: You can try the model through the [Ainize DEMO](https://main-klue-mrc-bert-scy6500.endpoint.ainize.ai/), and you can call the api through the [Ainize API](https://ainize.ai/scy6500/KLUE-MRC-BERT?branch=main).

## Overview
**Language model:** klue/bert-base  
**Language:** Korean  
**Downstream-task:** Extractive QA    
**Training data:** KLUE-MRC  
**Eval data:** KLUE-MRC  
**Code:**  See [Ainize Workspace]()  


## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("./mrc-bert-base")
model = AutoModelForQuestionAnswering.from_pretrained("./mrc-bert-base")

context = "your context"
question = "your question"

encodings = tokenizer(context, question, max_length=512, truncation=True,
                      padding="max_length", return_token_type_ids=False)

input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]

pred = model(input_ids, attention_mask=attention_mask)

start_logits, end_logits = pred.start_logits, pred.end_logits

token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1)

pred_ids = input_ids[0][token_start_index: token_end_index + 1]

prediction = tokenizer.decode(pred_ids)
```

## About us
[Teachable NLP](https://ainize.ai/teachable-nlp) - Train NLP models with your own text without writing any code  
[Ainize](https://ainize.ai/) - Deploy ML project using free gpu