Training in progress, epoch 2, checkpoint
Browse files- checkpoint-2148/added_tokens.json +24 -0
- checkpoint-2148/config.json +29 -0
- checkpoint-2148/generation_config.json +14 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/global_step2147/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-2148/latest +1 -0
- checkpoint-2148/merges.txt +0 -0
- checkpoint-2148/model-00001-of-00004.safetensors +3 -0
- checkpoint-2148/model-00002-of-00004.safetensors +3 -0
- checkpoint-2148/model-00003-of-00004.safetensors +3 -0
- checkpoint-2148/model-00004-of-00004.safetensors +3 -0
- checkpoint-2148/model.safetensors.index.json +542 -0
- checkpoint-2148/rng_state_0.pth +3 -0
- checkpoint-2148/rng_state_1.pth +3 -0
- checkpoint-2148/rng_state_2.pth +3 -0
- checkpoint-2148/rng_state_3.pth +3 -0
- checkpoint-2148/rng_state_4.pth +3 -0
- checkpoint-2148/rng_state_5.pth +3 -0
- checkpoint-2148/rng_state_6.pth +3 -0
- checkpoint-2148/rng_state_7.pth +3 -0
- checkpoint-2148/scheduler.pt +3 -0
- checkpoint-2148/special_tokens_map.json +25 -0
- checkpoint-2148/tokenizer.json +3 -0
- checkpoint-2148/tokenizer_config.json +208 -0
- checkpoint-2148/trainer_state.json +3036 -0
- checkpoint-2148/training_args.bin +3 -0
- checkpoint-2148/vocab.json +0 -0
- checkpoint-2148/zero_to_fp32.py +674 -0
checkpoint-2148/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-2148/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen7B-HP-AMP",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": 131072,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.49.0",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
checkpoint-2148/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.49.0"
|
14 |
+
}
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a14daf30692502ce252c3f6c4e6e9c96e13063c40997518152cf68670a06154b
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6cf7676fd4a0a1c0c39ce8885b957d1ade8d6f3d30da90a92f18b759c7ec459
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d83b166b6ca9a9f85c0fc497d4f1d6b8071a315f9a930eb723a94ea9de937605
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4ab55f44d5b66bc9e37586e4bd27b237fd231f188e81bcf8dad197429625700
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e4d52bbdeee3c4f0be515e84a02773f186b5118616912b96df9a9df9587d64
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:488778e4b68f24b47595f60dedb597e82c822f1c9c29a3061869bf4536aed1c8
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:765f05b468e6a3e8bae4fe3356cf92d556ba38fb1ed18cae6fc9d5f0c51a4b75
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cb186d2204b2751307c769bd799a9d21c69497050a49f931bd093142f539080
|
3 |
+
size 12117257612
|
checkpoint-2148/global_step2147/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac16b658db01c302634ccaf139eb49471821ce0eb58eda48f92dfc0bf6d6a283
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b679a7a8adb74687d574da41a488c5180c991df681e6f5aeff97fba683ccec8
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbfb8c014e9620d18aee8d7add1593439632ec8e9ea9866c4cde80096f46bed9
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc41e6276ec67247b79af681021e39e7d368cdef5df0c097007c3a9b82295b61
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9296d159e43f551899e0010470cac82d9f99058ab6ac4134d583a88b4475b7df
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16885cd3cd98ae22ff3a19415d5211753288d4f662c973be46cc3c7a7e17d029
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a3ca1b330100f1cfb8923af5c53dd6402373f2a68a2e36cc4d0c13f2634f012
|
3 |
+
size 256905
|
checkpoint-2148/global_step2147/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c401b6b35dfcc48e28491d7818dcd2cb1c266f0994727e8153909f1d135c90eb
|
3 |
+
size 256905
|
checkpoint-2148/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2147
|
checkpoint-2148/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2148/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f42241f6128380cb284363f9040077a885bcd14611e318b4b2d0d05175f65a9
|
3 |
+
size 4947447072
|
checkpoint-2148/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d963e5fc4f412d1a266ac8097800ae2ff396a16233fdf20617bc2402601ae9
|
3 |
+
size 4991571912
|
checkpoint-2148/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f88ea8f8c052cf813720fe7e1f763a4fd33893bd10bca7cb5c88be90e9f4d569
|
3 |
+
size 4991571984
|
checkpoint-2148/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0fbb2ab89a491cd0720ab931baa1c8e23d5fe4f8299d6f4b3b5802c6fc7e0e0
|
3 |
+
size 1225807416
|
checkpoint-2148/model.safetensors.index.json
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16156336672
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.1.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.1.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.1.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.1.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.1.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.1.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
45 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
46 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.10.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.10.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.10.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.10.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.10.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.10.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.10.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.11.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.11.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.11.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.11.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.11.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.11.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.11.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.12.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.12.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.12.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.12.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.12.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.12.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.12.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.13.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.13.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.13.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.13.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.13.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.13.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.13.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.14.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.14.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.14.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.14.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.14.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.14.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.14.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.15.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.15.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.15.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.15.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.15.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.15.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.15.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.16.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.16.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.16.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.16.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.16.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.16.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.16.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
176 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
177 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
178 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.17.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
185 |
+
"model.layers.17.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
186 |
+
"model.layers.17.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
187 |
+
"model.layers.17.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
188 |
+
"model.layers.17.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
189 |
+
"model.layers.17.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
190 |
+
"model.layers.17.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
191 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
192 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
193 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
194 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
195 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
196 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
197 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
198 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.18.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.18.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.18.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.18.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.18.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.18.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.18.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.19.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.19.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.19.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.19.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.19.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.19.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.19.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
237 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
238 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
239 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
240 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
241 |
+
"model.layers.2.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
242 |
+
"model.layers.2.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"model.layers.2.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
244 |
+
"model.layers.2.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"model.layers.2.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
246 |
+
"model.layers.2.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
247 |
+
"model.layers.2.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
249 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
252 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
254 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.20.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.20.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.20.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.20.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.20.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.20.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.20.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.21.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.21.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.21.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.21.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.21.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.21.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.21.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.22.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.22.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.22.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.22.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.22.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.22.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.22.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.23.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.23.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.23.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.23.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
321 |
+
"model.layers.23.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
322 |
+
"model.layers.23.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
323 |
+
"model.layers.23.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
328 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
329 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
330 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
331 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
332 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
333 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
335 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.24.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.24.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.24.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.24.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.layers.24.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
341 |
+
"model.layers.24.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
342 |
+
"model.layers.24.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
343 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
344 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
345 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
346 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
347 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
348 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
349 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
350 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
351 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
352 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
353 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
354 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
355 |
+
"model.layers.25.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
356 |
+
"model.layers.25.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
357 |
+
"model.layers.25.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
358 |
+
"model.layers.25.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
359 |
+
"model.layers.25.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
360 |
+
"model.layers.25.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
361 |
+
"model.layers.25.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
363 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
364 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
365 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
366 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
367 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
368 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
369 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
370 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
371 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
372 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
373 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
374 |
+
"model.layers.26.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
375 |
+
"model.layers.26.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
376 |
+
"model.layers.26.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
377 |
+
"model.layers.26.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.layers.26.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
379 |
+
"model.layers.26.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
380 |
+
"model.layers.26.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
381 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
382 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
383 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
384 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
385 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
386 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
387 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
388 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
389 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
391 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
392 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"model.layers.27.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
|
394 |
+
"model.layers.27.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
|
395 |
+
"model.layers.27.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
|
396 |
+
"model.layers.27.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
|
397 |
+
"model.layers.27.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
|
398 |
+
"model.layers.27.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
|
399 |
+
"model.layers.27.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
|
400 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
401 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
402 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
403 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
404 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
405 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
406 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
407 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"model.layers.3.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
413 |
+
"model.layers.3.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"model.layers.3.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.3.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.3.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.3.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"model.layers.3.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
430 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"model.layers.4.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"model.layers.4.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"model.layers.4.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"model.layers.4.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"model.layers.4.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
436 |
+
"model.layers.4.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
437 |
+
"model.layers.4.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
438 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
439 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
440 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
446 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
448 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
450 |
+
"model.layers.5.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
451 |
+
"model.layers.5.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
452 |
+
"model.layers.5.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
453 |
+
"model.layers.5.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
454 |
+
"model.layers.5.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
455 |
+
"model.layers.5.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"model.layers.5.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
460 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
461 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
462 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
463 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
464 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
466 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
468 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"model.layers.6.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"model.layers.6.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"model.layers.6.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"model.layers.6.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"model.layers.6.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
474 |
+
"model.layers.6.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
475 |
+
"model.layers.6.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
476 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
477 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
478 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
484 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
485 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
486 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
488 |
+
"model.layers.7.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
|
489 |
+
"model.layers.7.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
|
490 |
+
"model.layers.7.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
|
491 |
+
"model.layers.7.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
|
492 |
+
"model.layers.7.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
|
493 |
+
"model.layers.7.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"model.layers.7.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
498 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
499 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
500 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
501 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
502 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
503 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
504 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
505 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
506 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
507 |
+
"model.layers.8.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
508 |
+
"model.layers.8.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
509 |
+
"model.layers.8.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
510 |
+
"model.layers.8.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
511 |
+
"model.layers.8.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
512 |
+
"model.layers.8.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
513 |
+
"model.layers.8.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
514 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
515 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
516 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
517 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
518 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
519 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
520 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
521 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
522 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
523 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
524 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
525 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
526 |
+
"model.layers.9.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
|
527 |
+
"model.layers.9.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
|
528 |
+
"model.layers.9.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
|
529 |
+
"model.layers.9.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
|
530 |
+
"model.layers.9.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
|
531 |
+
"model.layers.9.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
|
532 |
+
"model.layers.9.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
|
533 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
534 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
535 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
536 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
537 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
538 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
539 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
540 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
541 |
+
}
|
542 |
+
}
|
checkpoint-2148/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
3 |
+
size 15984
|
checkpoint-2148/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
3 |
+
size 15984
|
checkpoint-2148/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56570f0b9c4a46ef6adafa222772f59b17d6eaad0a5bc9228f66bdf0ffeeffc0
|
3 |
+
size 1064
|
checkpoint-2148/special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<|im_end|>"
|
25 |
+
}
|
checkpoint-2148/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-2148/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|im_end|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-2148/trainer_state.json
ADDED
@@ -0,0 +1,3036 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2148,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.004657661853749418,
|
13 |
+
"grad_norm": 27.66617259818207,
|
14 |
+
"learning_rate": 5.813953488372093e-07,
|
15 |
+
"loss": 1.2864,
|
16 |
+
"step": 5
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.009315323707498836,
|
20 |
+
"grad_norm": 19.626216359351606,
|
21 |
+
"learning_rate": 1.1627906976744186e-06,
|
22 |
+
"loss": 1.2277,
|
23 |
+
"step": 10
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.013972985561248253,
|
27 |
+
"grad_norm": 7.689899823367007,
|
28 |
+
"learning_rate": 1.744186046511628e-06,
|
29 |
+
"loss": 1.0529,
|
30 |
+
"step": 15
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.018630647414997672,
|
34 |
+
"grad_norm": 4.9632975953671465,
|
35 |
+
"learning_rate": 2.325581395348837e-06,
|
36 |
+
"loss": 0.907,
|
37 |
+
"step": 20
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.02328830926874709,
|
41 |
+
"grad_norm": 2.000237294817273,
|
42 |
+
"learning_rate": 2.9069767441860468e-06,
|
43 |
+
"loss": 0.7884,
|
44 |
+
"step": 25
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.027945971122496506,
|
48 |
+
"grad_norm": 1.3650044798865562,
|
49 |
+
"learning_rate": 3.488372093023256e-06,
|
50 |
+
"loss": 0.7091,
|
51 |
+
"step": 30
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.032603632976245925,
|
55 |
+
"grad_norm": 1.0145438785392298,
|
56 |
+
"learning_rate": 4.0697674418604655e-06,
|
57 |
+
"loss": 0.6666,
|
58 |
+
"step": 35
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.037261294829995344,
|
62 |
+
"grad_norm": 0.7666883370082983,
|
63 |
+
"learning_rate": 4.651162790697674e-06,
|
64 |
+
"loss": 0.6289,
|
65 |
+
"step": 40
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.04191895668374476,
|
69 |
+
"grad_norm": 0.6977041513064055,
|
70 |
+
"learning_rate": 5.232558139534884e-06,
|
71 |
+
"loss": 0.5772,
|
72 |
+
"step": 45
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.04657661853749418,
|
76 |
+
"grad_norm": 0.6177135531852819,
|
77 |
+
"learning_rate": 5.8139534883720935e-06,
|
78 |
+
"loss": 0.5729,
|
79 |
+
"step": 50
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.05123428039124359,
|
83 |
+
"grad_norm": 0.5909988418524453,
|
84 |
+
"learning_rate": 6.395348837209303e-06,
|
85 |
+
"loss": 0.5555,
|
86 |
+
"step": 55
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.05589194224499301,
|
90 |
+
"grad_norm": 0.6995185567241584,
|
91 |
+
"learning_rate": 6.976744186046512e-06,
|
92 |
+
"loss": 0.5472,
|
93 |
+
"step": 60
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.06054960409874243,
|
97 |
+
"grad_norm": 0.7744854841742352,
|
98 |
+
"learning_rate": 7.558139534883721e-06,
|
99 |
+
"loss": 0.5379,
|
100 |
+
"step": 65
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.06520726595249185,
|
104 |
+
"grad_norm": 0.5473128068676195,
|
105 |
+
"learning_rate": 8.139534883720931e-06,
|
106 |
+
"loss": 0.5149,
|
107 |
+
"step": 70
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.06986492780624126,
|
111 |
+
"grad_norm": 0.711636506166052,
|
112 |
+
"learning_rate": 8.72093023255814e-06,
|
113 |
+
"loss": 0.5151,
|
114 |
+
"step": 75
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.07452258965999069,
|
118 |
+
"grad_norm": 0.6813906468319959,
|
119 |
+
"learning_rate": 9.302325581395349e-06,
|
120 |
+
"loss": 0.5252,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.0791802515137401,
|
125 |
+
"grad_norm": 0.7134287439415516,
|
126 |
+
"learning_rate": 9.883720930232558e-06,
|
127 |
+
"loss": 0.5024,
|
128 |
+
"step": 85
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.08383791336748952,
|
132 |
+
"grad_norm": 0.6992933648203333,
|
133 |
+
"learning_rate": 1.0465116279069768e-05,
|
134 |
+
"loss": 0.5085,
|
135 |
+
"step": 90
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.08849557522123894,
|
139 |
+
"grad_norm": 0.6462820616067007,
|
140 |
+
"learning_rate": 1.1046511627906977e-05,
|
141 |
+
"loss": 0.5129,
|
142 |
+
"step": 95
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.09315323707498836,
|
146 |
+
"grad_norm": 0.67397577790992,
|
147 |
+
"learning_rate": 1.1627906976744187e-05,
|
148 |
+
"loss": 0.5034,
|
149 |
+
"step": 100
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.09781089892873777,
|
153 |
+
"grad_norm": 0.7146380645525483,
|
154 |
+
"learning_rate": 1.2209302325581395e-05,
|
155 |
+
"loss": 0.506,
|
156 |
+
"step": 105
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.10246856078248719,
|
160 |
+
"grad_norm": 0.7569877075727182,
|
161 |
+
"learning_rate": 1.2790697674418606e-05,
|
162 |
+
"loss": 0.4939,
|
163 |
+
"step": 110
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.10712622263623661,
|
167 |
+
"grad_norm": 0.5765767741771239,
|
168 |
+
"learning_rate": 1.3372093023255814e-05,
|
169 |
+
"loss": 0.4932,
|
170 |
+
"step": 115
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.11178388448998602,
|
174 |
+
"grad_norm": 0.7689970599513694,
|
175 |
+
"learning_rate": 1.3953488372093024e-05,
|
176 |
+
"loss": 0.5041,
|
177 |
+
"step": 120
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.11644154634373545,
|
181 |
+
"grad_norm": 0.7710814056961762,
|
182 |
+
"learning_rate": 1.4534883720930233e-05,
|
183 |
+
"loss": 0.4846,
|
184 |
+
"step": 125
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.12109920819748486,
|
188 |
+
"grad_norm": 0.8067799411588391,
|
189 |
+
"learning_rate": 1.5116279069767441e-05,
|
190 |
+
"loss": 0.4868,
|
191 |
+
"step": 130
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.1257568700512343,
|
195 |
+
"grad_norm": 0.7337587312339595,
|
196 |
+
"learning_rate": 1.569767441860465e-05,
|
197 |
+
"loss": 0.4937,
|
198 |
+
"step": 135
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.1304145319049837,
|
202 |
+
"grad_norm": 0.8156553975576142,
|
203 |
+
"learning_rate": 1.6279069767441862e-05,
|
204 |
+
"loss": 0.4871,
|
205 |
+
"step": 140
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.1350721937587331,
|
209 |
+
"grad_norm": 0.9350450002033659,
|
210 |
+
"learning_rate": 1.686046511627907e-05,
|
211 |
+
"loss": 0.4972,
|
212 |
+
"step": 145
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.13972985561248252,
|
216 |
+
"grad_norm": 0.7681334266478443,
|
217 |
+
"learning_rate": 1.744186046511628e-05,
|
218 |
+
"loss": 0.4907,
|
219 |
+
"step": 150
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.14438751746623196,
|
223 |
+
"grad_norm": 0.84555038297673,
|
224 |
+
"learning_rate": 1.802325581395349e-05,
|
225 |
+
"loss": 0.4723,
|
226 |
+
"step": 155
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.14904517931998137,
|
230 |
+
"grad_norm": 0.8372039362868026,
|
231 |
+
"learning_rate": 1.8604651162790697e-05,
|
232 |
+
"loss": 0.4793,
|
233 |
+
"step": 160
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.1537028411737308,
|
237 |
+
"grad_norm": 0.7817304569895932,
|
238 |
+
"learning_rate": 1.918604651162791e-05,
|
239 |
+
"loss": 0.4798,
|
240 |
+
"step": 165
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.1583605030274802,
|
244 |
+
"grad_norm": 0.9789922595882735,
|
245 |
+
"learning_rate": 1.9767441860465116e-05,
|
246 |
+
"loss": 0.4783,
|
247 |
+
"step": 170
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.1630181648812296,
|
251 |
+
"grad_norm": 0.7335091977994727,
|
252 |
+
"learning_rate": 2.0348837209302328e-05,
|
253 |
+
"loss": 0.4893,
|
254 |
+
"step": 175
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.16767582673497905,
|
258 |
+
"grad_norm": 0.8155578488051264,
|
259 |
+
"learning_rate": 2.0930232558139536e-05,
|
260 |
+
"loss": 0.484,
|
261 |
+
"step": 180
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.17233348858872846,
|
265 |
+
"grad_norm": 0.8144677339935327,
|
266 |
+
"learning_rate": 2.1511627906976744e-05,
|
267 |
+
"loss": 0.482,
|
268 |
+
"step": 185
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.17699115044247787,
|
272 |
+
"grad_norm": 0.8341691871989111,
|
273 |
+
"learning_rate": 2.2093023255813955e-05,
|
274 |
+
"loss": 0.4753,
|
275 |
+
"step": 190
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.18164881229622729,
|
279 |
+
"grad_norm": 0.7550827853742104,
|
280 |
+
"learning_rate": 2.2674418604651163e-05,
|
281 |
+
"loss": 0.4811,
|
282 |
+
"step": 195
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.18630647414997673,
|
286 |
+
"grad_norm": 0.726150592947813,
|
287 |
+
"learning_rate": 2.3255813953488374e-05,
|
288 |
+
"loss": 0.4548,
|
289 |
+
"step": 200
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.19096413600372614,
|
293 |
+
"grad_norm": 0.9618454710454514,
|
294 |
+
"learning_rate": 2.3837209302325582e-05,
|
295 |
+
"loss": 0.4765,
|
296 |
+
"step": 205
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.19562179785747555,
|
300 |
+
"grad_norm": 0.8357087005031101,
|
301 |
+
"learning_rate": 2.441860465116279e-05,
|
302 |
+
"loss": 0.4664,
|
303 |
+
"step": 210
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.20027945971122496,
|
307 |
+
"grad_norm": 0.9769412255461828,
|
308 |
+
"learning_rate": 2.5e-05,
|
309 |
+
"loss": 0.4772,
|
310 |
+
"step": 215
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.20493712156497437,
|
314 |
+
"grad_norm": 0.819002974551843,
|
315 |
+
"learning_rate": 2.5581395348837212e-05,
|
316 |
+
"loss": 0.4731,
|
317 |
+
"step": 220
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.2095947834187238,
|
321 |
+
"grad_norm": 1.0374332843969527,
|
322 |
+
"learning_rate": 2.616279069767442e-05,
|
323 |
+
"loss": 0.4763,
|
324 |
+
"step": 225
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.21425244527247322,
|
328 |
+
"grad_norm": 0.8985668587375348,
|
329 |
+
"learning_rate": 2.674418604651163e-05,
|
330 |
+
"loss": 0.4745,
|
331 |
+
"step": 230
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.21891010712622264,
|
335 |
+
"grad_norm": 1.0814445549381904,
|
336 |
+
"learning_rate": 2.7325581395348836e-05,
|
337 |
+
"loss": 0.4695,
|
338 |
+
"step": 235
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.22356776897997205,
|
342 |
+
"grad_norm": 1.0714624697860875,
|
343 |
+
"learning_rate": 2.7906976744186048e-05,
|
344 |
+
"loss": 0.4687,
|
345 |
+
"step": 240
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.22822543083372146,
|
349 |
+
"grad_norm": 0.9839374258594388,
|
350 |
+
"learning_rate": 2.848837209302326e-05,
|
351 |
+
"loss": 0.4598,
|
352 |
+
"step": 245
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.2328830926874709,
|
356 |
+
"grad_norm": 0.9846036088169035,
|
357 |
+
"learning_rate": 2.9069767441860467e-05,
|
358 |
+
"loss": 0.4569,
|
359 |
+
"step": 250
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.2375407545412203,
|
363 |
+
"grad_norm": 0.7487150924303477,
|
364 |
+
"learning_rate": 2.9651162790697678e-05,
|
365 |
+
"loss": 0.4676,
|
366 |
+
"step": 255
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.24219841639496972,
|
370 |
+
"grad_norm": 0.8226804932307876,
|
371 |
+
"learning_rate": 3.0232558139534883e-05,
|
372 |
+
"loss": 0.4722,
|
373 |
+
"step": 260
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.24685607824871914,
|
377 |
+
"grad_norm": 0.7711022626726491,
|
378 |
+
"learning_rate": 3.081395348837209e-05,
|
379 |
+
"loss": 0.4658,
|
380 |
+
"step": 265
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.2515137401024686,
|
384 |
+
"grad_norm": 0.8932122698414526,
|
385 |
+
"learning_rate": 3.13953488372093e-05,
|
386 |
+
"loss": 0.4557,
|
387 |
+
"step": 270
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.25617140195621796,
|
391 |
+
"grad_norm": 0.7549553477075355,
|
392 |
+
"learning_rate": 3.197674418604651e-05,
|
393 |
+
"loss": 0.4716,
|
394 |
+
"step": 275
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.2608290638099674,
|
398 |
+
"grad_norm": 1.203597171762952,
|
399 |
+
"learning_rate": 3.2558139534883724e-05,
|
400 |
+
"loss": 0.4602,
|
401 |
+
"step": 280
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.26548672566371684,
|
405 |
+
"grad_norm": 0.6877770638858097,
|
406 |
+
"learning_rate": 3.313953488372093e-05,
|
407 |
+
"loss": 0.4589,
|
408 |
+
"step": 285
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.2701443875174662,
|
412 |
+
"grad_norm": 0.9865065100124113,
|
413 |
+
"learning_rate": 3.372093023255814e-05,
|
414 |
+
"loss": 0.4577,
|
415 |
+
"step": 290
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.27480204937121566,
|
419 |
+
"grad_norm": 0.9375168702189124,
|
420 |
+
"learning_rate": 3.430232558139535e-05,
|
421 |
+
"loss": 0.4516,
|
422 |
+
"step": 295
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.27945971122496505,
|
426 |
+
"grad_norm": 0.7788845536490606,
|
427 |
+
"learning_rate": 3.488372093023256e-05,
|
428 |
+
"loss": 0.4633,
|
429 |
+
"step": 300
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.2841173730787145,
|
433 |
+
"grad_norm": 0.8098072656748624,
|
434 |
+
"learning_rate": 3.5465116279069774e-05,
|
435 |
+
"loss": 0.4691,
|
436 |
+
"step": 305
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.2887750349324639,
|
440 |
+
"grad_norm": 1.3633357913402282,
|
441 |
+
"learning_rate": 3.604651162790698e-05,
|
442 |
+
"loss": 0.4662,
|
443 |
+
"step": 310
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.2934326967862133,
|
447 |
+
"grad_norm": 0.8073757027557402,
|
448 |
+
"learning_rate": 3.662790697674418e-05,
|
449 |
+
"loss": 0.4551,
|
450 |
+
"step": 315
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.29809035863996275,
|
454 |
+
"grad_norm": 1.0699898191361614,
|
455 |
+
"learning_rate": 3.7209302325581394e-05,
|
456 |
+
"loss": 0.4614,
|
457 |
+
"step": 320
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.30274802049371213,
|
461 |
+
"grad_norm": 0.7424537685527064,
|
462 |
+
"learning_rate": 3.7790697674418606e-05,
|
463 |
+
"loss": 0.4637,
|
464 |
+
"step": 325
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.3074056823474616,
|
468 |
+
"grad_norm": 1.0663211887340074,
|
469 |
+
"learning_rate": 3.837209302325582e-05,
|
470 |
+
"loss": 0.463,
|
471 |
+
"step": 330
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.312063344201211,
|
475 |
+
"grad_norm": 0.9616713033039357,
|
476 |
+
"learning_rate": 3.895348837209303e-05,
|
477 |
+
"loss": 0.4483,
|
478 |
+
"step": 335
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.3167210060549604,
|
482 |
+
"grad_norm": 0.9289014338139833,
|
483 |
+
"learning_rate": 3.953488372093023e-05,
|
484 |
+
"loss": 0.4618,
|
485 |
+
"step": 340
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.32137866790870984,
|
489 |
+
"grad_norm": 0.9205940376448726,
|
490 |
+
"learning_rate": 4.0116279069767444e-05,
|
491 |
+
"loss": 0.4516,
|
492 |
+
"step": 345
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.3260363297624592,
|
496 |
+
"grad_norm": 0.9475824983358404,
|
497 |
+
"learning_rate": 4.0697674418604655e-05,
|
498 |
+
"loss": 0.4545,
|
499 |
+
"step": 350
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.33069399161620866,
|
503 |
+
"grad_norm": 1.315055782839884,
|
504 |
+
"learning_rate": 4.127906976744187e-05,
|
505 |
+
"loss": 0.452,
|
506 |
+
"step": 355
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.3353516534699581,
|
510 |
+
"grad_norm": 1.068696802277167,
|
511 |
+
"learning_rate": 4.186046511627907e-05,
|
512 |
+
"loss": 0.4625,
|
513 |
+
"step": 360
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.3400093153237075,
|
517 |
+
"grad_norm": 1.036508382207286,
|
518 |
+
"learning_rate": 4.2441860465116276e-05,
|
519 |
+
"loss": 0.4615,
|
520 |
+
"step": 365
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.3446669771774569,
|
524 |
+
"grad_norm": 0.9771206427059291,
|
525 |
+
"learning_rate": 4.302325581395349e-05,
|
526 |
+
"loss": 0.472,
|
527 |
+
"step": 370
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.3493246390312063,
|
531 |
+
"grad_norm": 0.9364995309041826,
|
532 |
+
"learning_rate": 4.36046511627907e-05,
|
533 |
+
"loss": 0.4662,
|
534 |
+
"step": 375
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.35398230088495575,
|
538 |
+
"grad_norm": 0.8666798423814609,
|
539 |
+
"learning_rate": 4.418604651162791e-05,
|
540 |
+
"loss": 0.4513,
|
541 |
+
"step": 380
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.3586399627387052,
|
545 |
+
"grad_norm": 0.6625516854940565,
|
546 |
+
"learning_rate": 4.476744186046512e-05,
|
547 |
+
"loss": 0.4458,
|
548 |
+
"step": 385
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.36329762459245457,
|
552 |
+
"grad_norm": 0.5910994980517921,
|
553 |
+
"learning_rate": 4.5348837209302326e-05,
|
554 |
+
"loss": 0.4518,
|
555 |
+
"step": 390
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.367955286446204,
|
559 |
+
"grad_norm": 0.8576114090853963,
|
560 |
+
"learning_rate": 4.593023255813954e-05,
|
561 |
+
"loss": 0.4472,
|
562 |
+
"step": 395
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.37261294829995345,
|
566 |
+
"grad_norm": 1.059751439208873,
|
567 |
+
"learning_rate": 4.651162790697675e-05,
|
568 |
+
"loss": 0.4453,
|
569 |
+
"step": 400
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.37727061015370283,
|
573 |
+
"grad_norm": 0.7913724415049757,
|
574 |
+
"learning_rate": 4.709302325581396e-05,
|
575 |
+
"loss": 0.4492,
|
576 |
+
"step": 405
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.3819282720074523,
|
580 |
+
"grad_norm": 0.7471961729660666,
|
581 |
+
"learning_rate": 4.7674418604651164e-05,
|
582 |
+
"loss": 0.4559,
|
583 |
+
"step": 410
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.38658593386120166,
|
587 |
+
"grad_norm": 0.7938017748454547,
|
588 |
+
"learning_rate": 4.8255813953488375e-05,
|
589 |
+
"loss": 0.4556,
|
590 |
+
"step": 415
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.3912435957149511,
|
594 |
+
"grad_norm": 0.861398782650763,
|
595 |
+
"learning_rate": 4.883720930232558e-05,
|
596 |
+
"loss": 0.4457,
|
597 |
+
"step": 420
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.39590125756870054,
|
601 |
+
"grad_norm": 1.164899725237036,
|
602 |
+
"learning_rate": 4.941860465116279e-05,
|
603 |
+
"loss": 0.4619,
|
604 |
+
"step": 425
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.4005589194224499,
|
608 |
+
"grad_norm": 0.9327630997758065,
|
609 |
+
"learning_rate": 5e-05,
|
610 |
+
"loss": 0.4553,
|
611 |
+
"step": 430
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.40521658127619936,
|
615 |
+
"grad_norm": 0.7755438754585425,
|
616 |
+
"learning_rate": 4.9935266701191095e-05,
|
617 |
+
"loss": 0.4589,
|
618 |
+
"step": 435
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.40987424312994875,
|
622 |
+
"grad_norm": 0.6084430372051816,
|
623 |
+
"learning_rate": 4.987053340238219e-05,
|
624 |
+
"loss": 0.4659,
|
625 |
+
"step": 440
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.4145319049836982,
|
629 |
+
"grad_norm": 0.706361406749313,
|
630 |
+
"learning_rate": 4.980580010357328e-05,
|
631 |
+
"loss": 0.4454,
|
632 |
+
"step": 445
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.4191895668374476,
|
636 |
+
"grad_norm": 0.8310997319677449,
|
637 |
+
"learning_rate": 4.9741066804764374e-05,
|
638 |
+
"loss": 0.4492,
|
639 |
+
"step": 450
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.423847228691197,
|
643 |
+
"grad_norm": 0.7992980724203008,
|
644 |
+
"learning_rate": 4.967633350595546e-05,
|
645 |
+
"loss": 0.4677,
|
646 |
+
"step": 455
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.42850489054494645,
|
650 |
+
"grad_norm": 0.7848440239850348,
|
651 |
+
"learning_rate": 4.961160020714656e-05,
|
652 |
+
"loss": 0.4484,
|
653 |
+
"step": 460
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.43316255239869583,
|
657 |
+
"grad_norm": 0.6875355874505797,
|
658 |
+
"learning_rate": 4.954686690833765e-05,
|
659 |
+
"loss": 0.4592,
|
660 |
+
"step": 465
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.43782021425244527,
|
664 |
+
"grad_norm": 0.9019111936374453,
|
665 |
+
"learning_rate": 4.948213360952874e-05,
|
666 |
+
"loss": 0.4507,
|
667 |
+
"step": 470
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.4424778761061947,
|
671 |
+
"grad_norm": 0.9237443867694993,
|
672 |
+
"learning_rate": 4.941740031071983e-05,
|
673 |
+
"loss": 0.46,
|
674 |
+
"step": 475
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.4471355379599441,
|
678 |
+
"grad_norm": 0.7227765777311265,
|
679 |
+
"learning_rate": 4.935266701191093e-05,
|
680 |
+
"loss": 0.4448,
|
681 |
+
"step": 480
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.45179319981369354,
|
685 |
+
"grad_norm": 0.7627976373615327,
|
686 |
+
"learning_rate": 4.9287933713102025e-05,
|
687 |
+
"loss": 0.4467,
|
688 |
+
"step": 485
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.4564508616674429,
|
692 |
+
"grad_norm": 0.8963050574087497,
|
693 |
+
"learning_rate": 4.922320041429311e-05,
|
694 |
+
"loss": 0.45,
|
695 |
+
"step": 490
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.46110852352119236,
|
699 |
+
"grad_norm": 0.629147905901097,
|
700 |
+
"learning_rate": 4.915846711548421e-05,
|
701 |
+
"loss": 0.4427,
|
702 |
+
"step": 495
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.4657661853749418,
|
706 |
+
"grad_norm": 0.5883243359451029,
|
707 |
+
"learning_rate": 4.9093733816675304e-05,
|
708 |
+
"loss": 0.4491,
|
709 |
+
"step": 500
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.4704238472286912,
|
713 |
+
"grad_norm": 0.5369867711481909,
|
714 |
+
"learning_rate": 4.902900051786639e-05,
|
715 |
+
"loss": 0.4435,
|
716 |
+
"step": 505
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.4750815090824406,
|
720 |
+
"grad_norm": 0.7877373044239472,
|
721 |
+
"learning_rate": 4.8964267219057483e-05,
|
722 |
+
"loss": 0.4392,
|
723 |
+
"step": 510
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.47973917093619,
|
727 |
+
"grad_norm": 0.5720363420014942,
|
728 |
+
"learning_rate": 4.889953392024858e-05,
|
729 |
+
"loss": 0.4502,
|
730 |
+
"step": 515
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.48439683278993945,
|
734 |
+
"grad_norm": 0.802768212629227,
|
735 |
+
"learning_rate": 4.883480062143967e-05,
|
736 |
+
"loss": 0.4479,
|
737 |
+
"step": 520
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.4890544946436889,
|
741 |
+
"grad_norm": 0.9089354308220536,
|
742 |
+
"learning_rate": 4.877006732263076e-05,
|
743 |
+
"loss": 0.4562,
|
744 |
+
"step": 525
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.49371215649743827,
|
748 |
+
"grad_norm": 0.9062598882129868,
|
749 |
+
"learning_rate": 4.8705334023821855e-05,
|
750 |
+
"loss": 0.4433,
|
751 |
+
"step": 530
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.4983698183511877,
|
755 |
+
"grad_norm": 1.0614931500809168,
|
756 |
+
"learning_rate": 4.864060072501295e-05,
|
757 |
+
"loss": 0.4509,
|
758 |
+
"step": 535
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.5030274802049371,
|
762 |
+
"grad_norm": 0.6656921373680668,
|
763 |
+
"learning_rate": 4.857586742620404e-05,
|
764 |
+
"loss": 0.4526,
|
765 |
+
"step": 540
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.5076851420586865,
|
769 |
+
"grad_norm": 0.761135804704884,
|
770 |
+
"learning_rate": 4.8511134127395134e-05,
|
771 |
+
"loss": 0.4428,
|
772 |
+
"step": 545
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.5123428039124359,
|
776 |
+
"grad_norm": 0.7524291911003331,
|
777 |
+
"learning_rate": 4.844640082858623e-05,
|
778 |
+
"loss": 0.4559,
|
779 |
+
"step": 550
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.5170004657661854,
|
783 |
+
"grad_norm": 0.7643694469846594,
|
784 |
+
"learning_rate": 4.838166752977732e-05,
|
785 |
+
"loss": 0.4441,
|
786 |
+
"step": 555
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.5216581276199348,
|
790 |
+
"grad_norm": 0.6727074125902812,
|
791 |
+
"learning_rate": 4.831693423096841e-05,
|
792 |
+
"loss": 0.4482,
|
793 |
+
"step": 560
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.5263157894736842,
|
797 |
+
"grad_norm": 0.6080795466448415,
|
798 |
+
"learning_rate": 4.82522009321595e-05,
|
799 |
+
"loss": 0.4464,
|
800 |
+
"step": 565
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.5309734513274337,
|
804 |
+
"grad_norm": 0.7154575256811082,
|
805 |
+
"learning_rate": 4.81874676333506e-05,
|
806 |
+
"loss": 0.4456,
|
807 |
+
"step": 570
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.5356311131811831,
|
811 |
+
"grad_norm": 0.5881145419877987,
|
812 |
+
"learning_rate": 4.812273433454169e-05,
|
813 |
+
"loss": 0.4429,
|
814 |
+
"step": 575
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.5402887750349324,
|
818 |
+
"grad_norm": 0.5629504481988451,
|
819 |
+
"learning_rate": 4.8058001035732785e-05,
|
820 |
+
"loss": 0.4428,
|
821 |
+
"step": 580
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.5449464368886818,
|
825 |
+
"grad_norm": 0.6740507784348432,
|
826 |
+
"learning_rate": 4.799326773692387e-05,
|
827 |
+
"loss": 0.4389,
|
828 |
+
"step": 585
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.5496040987424313,
|
832 |
+
"grad_norm": 0.5590413217515213,
|
833 |
+
"learning_rate": 4.792853443811497e-05,
|
834 |
+
"loss": 0.4543,
|
835 |
+
"step": 590
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.5542617605961807,
|
839 |
+
"grad_norm": 0.648175325079465,
|
840 |
+
"learning_rate": 4.7863801139306064e-05,
|
841 |
+
"loss": 0.4446,
|
842 |
+
"step": 595
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.5589194224499301,
|
846 |
+
"grad_norm": 0.6553497135224098,
|
847 |
+
"learning_rate": 4.779906784049715e-05,
|
848 |
+
"loss": 0.4501,
|
849 |
+
"step": 600
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.5635770843036796,
|
853 |
+
"grad_norm": 0.6606737255970081,
|
854 |
+
"learning_rate": 4.773433454168825e-05,
|
855 |
+
"loss": 0.4256,
|
856 |
+
"step": 605
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.568234746157429,
|
860 |
+
"grad_norm": 0.7570935534531892,
|
861 |
+
"learning_rate": 4.766960124287934e-05,
|
862 |
+
"loss": 0.4434,
|
863 |
+
"step": 610
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.5728924080111784,
|
867 |
+
"grad_norm": 0.6404868107239774,
|
868 |
+
"learning_rate": 4.760486794407043e-05,
|
869 |
+
"loss": 0.4368,
|
870 |
+
"step": 615
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.5775500698649279,
|
874 |
+
"grad_norm": 0.6133747116202044,
|
875 |
+
"learning_rate": 4.754013464526152e-05,
|
876 |
+
"loss": 0.4389,
|
877 |
+
"step": 620
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.5822077317186772,
|
881 |
+
"grad_norm": 1.0158420393440462,
|
882 |
+
"learning_rate": 4.747540134645262e-05,
|
883 |
+
"loss": 0.4492,
|
884 |
+
"step": 625
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.5868653935724266,
|
888 |
+
"grad_norm": 0.6424938062971148,
|
889 |
+
"learning_rate": 4.741066804764371e-05,
|
890 |
+
"loss": 0.4364,
|
891 |
+
"step": 630
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.5915230554261761,
|
895 |
+
"grad_norm": 0.5587540204090086,
|
896 |
+
"learning_rate": 4.73459347488348e-05,
|
897 |
+
"loss": 0.4353,
|
898 |
+
"step": 635
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.5961807172799255,
|
902 |
+
"grad_norm": 0.710771955315232,
|
903 |
+
"learning_rate": 4.7281201450025894e-05,
|
904 |
+
"loss": 0.4401,
|
905 |
+
"step": 640
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.6008383791336749,
|
909 |
+
"grad_norm": 0.8503719196899987,
|
910 |
+
"learning_rate": 4.721646815121699e-05,
|
911 |
+
"loss": 0.4401,
|
912 |
+
"step": 645
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.6054960409874243,
|
916 |
+
"grad_norm": 0.6213357524921049,
|
917 |
+
"learning_rate": 4.715173485240808e-05,
|
918 |
+
"loss": 0.4377,
|
919 |
+
"step": 650
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.6101537028411738,
|
923 |
+
"grad_norm": 0.728615015594888,
|
924 |
+
"learning_rate": 4.708700155359917e-05,
|
925 |
+
"loss": 0.4435,
|
926 |
+
"step": 655
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.6148113646949231,
|
930 |
+
"grad_norm": 0.69572702326182,
|
931 |
+
"learning_rate": 4.7022268254790266e-05,
|
932 |
+
"loss": 0.4438,
|
933 |
+
"step": 660
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.6194690265486725,
|
937 |
+
"grad_norm": 0.717769460394585,
|
938 |
+
"learning_rate": 4.695753495598136e-05,
|
939 |
+
"loss": 0.4382,
|
940 |
+
"step": 665
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.624126688402422,
|
944 |
+
"grad_norm": 0.6390733598139207,
|
945 |
+
"learning_rate": 4.689280165717245e-05,
|
946 |
+
"loss": 0.4419,
|
947 |
+
"step": 670
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.6287843502561714,
|
951 |
+
"grad_norm": 0.8175947498621025,
|
952 |
+
"learning_rate": 4.6828068358363545e-05,
|
953 |
+
"loss": 0.4338,
|
954 |
+
"step": 675
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.6334420121099208,
|
958 |
+
"grad_norm": 0.6392191276829822,
|
959 |
+
"learning_rate": 4.676333505955464e-05,
|
960 |
+
"loss": 0.437,
|
961 |
+
"step": 680
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.6380996739636703,
|
965 |
+
"grad_norm": 0.5385507245755475,
|
966 |
+
"learning_rate": 4.669860176074573e-05,
|
967 |
+
"loss": 0.448,
|
968 |
+
"step": 685
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.6427573358174197,
|
972 |
+
"grad_norm": 0.779484565903713,
|
973 |
+
"learning_rate": 4.6633868461936824e-05,
|
974 |
+
"loss": 0.4388,
|
975 |
+
"step": 690
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.6474149976711691,
|
979 |
+
"grad_norm": 0.609631979942144,
|
980 |
+
"learning_rate": 4.656913516312791e-05,
|
981 |
+
"loss": 0.4371,
|
982 |
+
"step": 695
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.6520726595249184,
|
986 |
+
"grad_norm": 0.6612175365081071,
|
987 |
+
"learning_rate": 4.650440186431901e-05,
|
988 |
+
"loss": 0.4346,
|
989 |
+
"step": 700
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.6567303213786679,
|
993 |
+
"grad_norm": 0.5776526816400351,
|
994 |
+
"learning_rate": 4.64396685655101e-05,
|
995 |
+
"loss": 0.4325,
|
996 |
+
"step": 705
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.6613879832324173,
|
1000 |
+
"grad_norm": 0.6777612372991866,
|
1001 |
+
"learning_rate": 4.637493526670119e-05,
|
1002 |
+
"loss": 0.4433,
|
1003 |
+
"step": 710
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.6660456450861667,
|
1007 |
+
"grad_norm": 0.652431971316431,
|
1008 |
+
"learning_rate": 4.631020196789229e-05,
|
1009 |
+
"loss": 0.4383,
|
1010 |
+
"step": 715
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.6707033069399162,
|
1014 |
+
"grad_norm": 0.8345742527824963,
|
1015 |
+
"learning_rate": 4.624546866908338e-05,
|
1016 |
+
"loss": 0.4297,
|
1017 |
+
"step": 720
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.6753609687936656,
|
1021 |
+
"grad_norm": 0.5978893188286112,
|
1022 |
+
"learning_rate": 4.618073537027447e-05,
|
1023 |
+
"loss": 0.4353,
|
1024 |
+
"step": 725
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.680018630647415,
|
1028 |
+
"grad_norm": 0.8328268112464421,
|
1029 |
+
"learning_rate": 4.611600207146556e-05,
|
1030 |
+
"loss": 0.4421,
|
1031 |
+
"step": 730
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.6846762925011645,
|
1035 |
+
"grad_norm": 0.7087213010225971,
|
1036 |
+
"learning_rate": 4.605126877265666e-05,
|
1037 |
+
"loss": 0.4304,
|
1038 |
+
"step": 735
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.6893339543549138,
|
1042 |
+
"grad_norm": 0.6869314447013355,
|
1043 |
+
"learning_rate": 4.598653547384775e-05,
|
1044 |
+
"loss": 0.4347,
|
1045 |
+
"step": 740
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.6939916162086632,
|
1049 |
+
"grad_norm": 0.6167757431721599,
|
1050 |
+
"learning_rate": 4.592180217503884e-05,
|
1051 |
+
"loss": 0.4312,
|
1052 |
+
"step": 745
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.6986492780624126,
|
1056 |
+
"grad_norm": 0.7676543887073451,
|
1057 |
+
"learning_rate": 4.585706887622993e-05,
|
1058 |
+
"loss": 0.4393,
|
1059 |
+
"step": 750
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.7033069399161621,
|
1063 |
+
"grad_norm": 0.6961688773290436,
|
1064 |
+
"learning_rate": 4.5792335577421026e-05,
|
1065 |
+
"loss": 0.4295,
|
1066 |
+
"step": 755
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.7079646017699115,
|
1070 |
+
"grad_norm": 0.5967737066278368,
|
1071 |
+
"learning_rate": 4.572760227861212e-05,
|
1072 |
+
"loss": 0.4317,
|
1073 |
+
"step": 760
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.7126222636236609,
|
1077 |
+
"grad_norm": 0.5577548927242444,
|
1078 |
+
"learning_rate": 4.566286897980321e-05,
|
1079 |
+
"loss": 0.4388,
|
1080 |
+
"step": 765
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.7172799254774104,
|
1084 |
+
"grad_norm": 0.6798109409577441,
|
1085 |
+
"learning_rate": 4.5598135680994305e-05,
|
1086 |
+
"loss": 0.438,
|
1087 |
+
"step": 770
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.7219375873311598,
|
1091 |
+
"grad_norm": 0.7079083857791663,
|
1092 |
+
"learning_rate": 4.55334023821854e-05,
|
1093 |
+
"loss": 0.4266,
|
1094 |
+
"step": 775
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.7265952491849091,
|
1098 |
+
"grad_norm": 0.8509226139438899,
|
1099 |
+
"learning_rate": 4.546866908337649e-05,
|
1100 |
+
"loss": 0.4427,
|
1101 |
+
"step": 780
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.7312529110386586,
|
1105 |
+
"grad_norm": 0.7242979399552838,
|
1106 |
+
"learning_rate": 4.5403935784567584e-05,
|
1107 |
+
"loss": 0.4362,
|
1108 |
+
"step": 785
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.735910572892408,
|
1112 |
+
"grad_norm": 0.5877311409433356,
|
1113 |
+
"learning_rate": 4.533920248575868e-05,
|
1114 |
+
"loss": 0.4284,
|
1115 |
+
"step": 790
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.7405682347461574,
|
1119 |
+
"grad_norm": 0.6078912772108137,
|
1120 |
+
"learning_rate": 4.527446918694977e-05,
|
1121 |
+
"loss": 0.4347,
|
1122 |
+
"step": 795
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.7452258965999069,
|
1126 |
+
"grad_norm": 0.5476766413302819,
|
1127 |
+
"learning_rate": 4.520973588814086e-05,
|
1128 |
+
"loss": 0.4308,
|
1129 |
+
"step": 800
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.7498835584536563,
|
1133 |
+
"grad_norm": 0.5195378720227425,
|
1134 |
+
"learning_rate": 4.5145002589331956e-05,
|
1135 |
+
"loss": 0.4453,
|
1136 |
+
"step": 805
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.7545412203074057,
|
1140 |
+
"grad_norm": 0.7360682617560098,
|
1141 |
+
"learning_rate": 4.508026929052305e-05,
|
1142 |
+
"loss": 0.431,
|
1143 |
+
"step": 810
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.759198882161155,
|
1147 |
+
"grad_norm": 0.5685816437073101,
|
1148 |
+
"learning_rate": 4.501553599171414e-05,
|
1149 |
+
"loss": 0.4342,
|
1150 |
+
"step": 815
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.7638565440149045,
|
1154 |
+
"grad_norm": 0.5972759336495264,
|
1155 |
+
"learning_rate": 4.495080269290523e-05,
|
1156 |
+
"loss": 0.4336,
|
1157 |
+
"step": 820
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.7685142058686539,
|
1161 |
+
"grad_norm": 0.6728421551142247,
|
1162 |
+
"learning_rate": 4.488606939409633e-05,
|
1163 |
+
"loss": 0.4226,
|
1164 |
+
"step": 825
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.7731718677224033,
|
1168 |
+
"grad_norm": 0.5582332660093027,
|
1169 |
+
"learning_rate": 4.482133609528742e-05,
|
1170 |
+
"loss": 0.4302,
|
1171 |
+
"step": 830
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.7778295295761528,
|
1175 |
+
"grad_norm": 0.6980425901666201,
|
1176 |
+
"learning_rate": 4.475660279647851e-05,
|
1177 |
+
"loss": 0.4372,
|
1178 |
+
"step": 835
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.7824871914299022,
|
1182 |
+
"grad_norm": 0.7390227270424299,
|
1183 |
+
"learning_rate": 4.46918694976696e-05,
|
1184 |
+
"loss": 0.4232,
|
1185 |
+
"step": 840
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.7871448532836516,
|
1189 |
+
"grad_norm": 0.6485234571078656,
|
1190 |
+
"learning_rate": 4.46271361988607e-05,
|
1191 |
+
"loss": 0.4284,
|
1192 |
+
"step": 845
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.7918025151374011,
|
1196 |
+
"grad_norm": 0.6336992788450944,
|
1197 |
+
"learning_rate": 4.4562402900051786e-05,
|
1198 |
+
"loss": 0.4307,
|
1199 |
+
"step": 850
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.7964601769911505,
|
1203 |
+
"grad_norm": 0.7410255325128174,
|
1204 |
+
"learning_rate": 4.449766960124288e-05,
|
1205 |
+
"loss": 0.4236,
|
1206 |
+
"step": 855
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.8011178388448998,
|
1210 |
+
"grad_norm": 0.5276824982854947,
|
1211 |
+
"learning_rate": 4.443293630243397e-05,
|
1212 |
+
"loss": 0.4252,
|
1213 |
+
"step": 860
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.8057755006986492,
|
1217 |
+
"grad_norm": 0.5896389602903055,
|
1218 |
+
"learning_rate": 4.436820300362507e-05,
|
1219 |
+
"loss": 0.4284,
|
1220 |
+
"step": 865
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.8104331625523987,
|
1224 |
+
"grad_norm": 0.5253923050441579,
|
1225 |
+
"learning_rate": 4.430346970481616e-05,
|
1226 |
+
"loss": 0.4227,
|
1227 |
+
"step": 870
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.8150908244061481,
|
1231 |
+
"grad_norm": 0.5344210226388759,
|
1232 |
+
"learning_rate": 4.423873640600725e-05,
|
1233 |
+
"loss": 0.4321,
|
1234 |
+
"step": 875
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.8197484862598975,
|
1238 |
+
"grad_norm": 0.5189955942586891,
|
1239 |
+
"learning_rate": 4.4174003107198344e-05,
|
1240 |
+
"loss": 0.4164,
|
1241 |
+
"step": 880
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.824406148113647,
|
1245 |
+
"grad_norm": 0.505727185520852,
|
1246 |
+
"learning_rate": 4.410926980838944e-05,
|
1247 |
+
"loss": 0.4311,
|
1248 |
+
"step": 885
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.8290638099673964,
|
1252 |
+
"grad_norm": 0.6952374910519269,
|
1253 |
+
"learning_rate": 4.404453650958053e-05,
|
1254 |
+
"loss": 0.4298,
|
1255 |
+
"step": 890
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.8337214718211458,
|
1259 |
+
"grad_norm": 0.6334651402321975,
|
1260 |
+
"learning_rate": 4.397980321077162e-05,
|
1261 |
+
"loss": 0.4302,
|
1262 |
+
"step": 895
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.8383791336748952,
|
1266 |
+
"grad_norm": 0.5871993814882748,
|
1267 |
+
"learning_rate": 4.3915069911962716e-05,
|
1268 |
+
"loss": 0.4243,
|
1269 |
+
"step": 900
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.8430367955286446,
|
1273 |
+
"grad_norm": 0.562675211982263,
|
1274 |
+
"learning_rate": 4.385033661315381e-05,
|
1275 |
+
"loss": 0.4282,
|
1276 |
+
"step": 905
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.847694457382394,
|
1280 |
+
"grad_norm": 0.55189342404869,
|
1281 |
+
"learning_rate": 4.37856033143449e-05,
|
1282 |
+
"loss": 0.4342,
|
1283 |
+
"step": 910
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.8523521192361434,
|
1287 |
+
"grad_norm": 0.7717927793072482,
|
1288 |
+
"learning_rate": 4.3720870015535995e-05,
|
1289 |
+
"loss": 0.4262,
|
1290 |
+
"step": 915
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.8570097810898929,
|
1294 |
+
"grad_norm": 0.545706766656389,
|
1295 |
+
"learning_rate": 4.365613671672709e-05,
|
1296 |
+
"loss": 0.4334,
|
1297 |
+
"step": 920
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.8616674429436423,
|
1301 |
+
"grad_norm": 0.7308396494889845,
|
1302 |
+
"learning_rate": 4.359140341791818e-05,
|
1303 |
+
"loss": 0.4276,
|
1304 |
+
"step": 925
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.8663251047973917,
|
1308 |
+
"grad_norm": 0.6334665220388306,
|
1309 |
+
"learning_rate": 4.352667011910927e-05,
|
1310 |
+
"loss": 0.4289,
|
1311 |
+
"step": 930
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.8709827666511412,
|
1315 |
+
"grad_norm": 0.5789727565447382,
|
1316 |
+
"learning_rate": 4.346193682030037e-05,
|
1317 |
+
"loss": 0.4177,
|
1318 |
+
"step": 935
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.8756404285048905,
|
1322 |
+
"grad_norm": 0.6071364036108049,
|
1323 |
+
"learning_rate": 4.339720352149146e-05,
|
1324 |
+
"loss": 0.4187,
|
1325 |
+
"step": 940
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.8802980903586399,
|
1329 |
+
"grad_norm": 0.48355618067734446,
|
1330 |
+
"learning_rate": 4.3332470222682546e-05,
|
1331 |
+
"loss": 0.4222,
|
1332 |
+
"step": 945
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.8849557522123894,
|
1336 |
+
"grad_norm": 0.757016952941287,
|
1337 |
+
"learning_rate": 4.326773692387364e-05,
|
1338 |
+
"loss": 0.4149,
|
1339 |
+
"step": 950
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.8896134140661388,
|
1343 |
+
"grad_norm": 0.5970956354199685,
|
1344 |
+
"learning_rate": 4.320300362506474e-05,
|
1345 |
+
"loss": 0.4285,
|
1346 |
+
"step": 955
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.8942710759198882,
|
1350 |
+
"grad_norm": 1.7486796656102368,
|
1351 |
+
"learning_rate": 4.313827032625583e-05,
|
1352 |
+
"loss": 0.4328,
|
1353 |
+
"step": 960
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.8989287377736377,
|
1357 |
+
"grad_norm": 0.676896991938164,
|
1358 |
+
"learning_rate": 4.307353702744692e-05,
|
1359 |
+
"loss": 0.4278,
|
1360 |
+
"step": 965
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.9035863996273871,
|
1364 |
+
"grad_norm": 0.5343157092353157,
|
1365 |
+
"learning_rate": 4.300880372863801e-05,
|
1366 |
+
"loss": 0.4298,
|
1367 |
+
"step": 970
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.9082440614811365,
|
1371 |
+
"grad_norm": 0.6312289170160827,
|
1372 |
+
"learning_rate": 4.294407042982911e-05,
|
1373 |
+
"loss": 0.4237,
|
1374 |
+
"step": 975
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.9129017233348858,
|
1378 |
+
"grad_norm": 0.7628441977751337,
|
1379 |
+
"learning_rate": 4.28793371310202e-05,
|
1380 |
+
"loss": 0.4266,
|
1381 |
+
"step": 980
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.9175593851886353,
|
1385 |
+
"grad_norm": 1.0298339126452174,
|
1386 |
+
"learning_rate": 4.281460383221129e-05,
|
1387 |
+
"loss": 0.4308,
|
1388 |
+
"step": 985
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.9222170470423847,
|
1392 |
+
"grad_norm": 0.7772941072113776,
|
1393 |
+
"learning_rate": 4.274987053340238e-05,
|
1394 |
+
"loss": 0.4042,
|
1395 |
+
"step": 990
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.9268747088961341,
|
1399 |
+
"grad_norm": 0.8073817232990661,
|
1400 |
+
"learning_rate": 4.2685137234593476e-05,
|
1401 |
+
"loss": 0.4195,
|
1402 |
+
"step": 995
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.9315323707498836,
|
1406 |
+
"grad_norm": 0.7213209273575877,
|
1407 |
+
"learning_rate": 4.262040393578457e-05,
|
1408 |
+
"loss": 0.4224,
|
1409 |
+
"step": 1000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.936190032603633,
|
1413 |
+
"grad_norm": 0.7416359254585871,
|
1414 |
+
"learning_rate": 4.255567063697566e-05,
|
1415 |
+
"loss": 0.4312,
|
1416 |
+
"step": 1005
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.9408476944573824,
|
1420 |
+
"grad_norm": 0.527102694728885,
|
1421 |
+
"learning_rate": 4.2490937338166755e-05,
|
1422 |
+
"loss": 0.4201,
|
1423 |
+
"step": 1010
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.9455053563111319,
|
1427 |
+
"grad_norm": 0.5594511470545082,
|
1428 |
+
"learning_rate": 4.242620403935785e-05,
|
1429 |
+
"loss": 0.4224,
|
1430 |
+
"step": 1015
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.9501630181648812,
|
1434 |
+
"grad_norm": 0.5965418648993862,
|
1435 |
+
"learning_rate": 4.236147074054894e-05,
|
1436 |
+
"loss": 0.4309,
|
1437 |
+
"step": 1020
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.9548206800186306,
|
1441 |
+
"grad_norm": 0.5450943367909993,
|
1442 |
+
"learning_rate": 4.2296737441740034e-05,
|
1443 |
+
"loss": 0.4227,
|
1444 |
+
"step": 1025
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.95947834187238,
|
1448 |
+
"grad_norm": 0.7935428149469217,
|
1449 |
+
"learning_rate": 4.223200414293113e-05,
|
1450 |
+
"loss": 0.422,
|
1451 |
+
"step": 1030
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.9641360037261295,
|
1455 |
+
"grad_norm": 0.48700743765986526,
|
1456 |
+
"learning_rate": 4.216727084412222e-05,
|
1457 |
+
"loss": 0.4186,
|
1458 |
+
"step": 1035
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.9687936655798789,
|
1462 |
+
"grad_norm": 0.7728666319795747,
|
1463 |
+
"learning_rate": 4.2102537545313306e-05,
|
1464 |
+
"loss": 0.4177,
|
1465 |
+
"step": 1040
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.9734513274336283,
|
1469 |
+
"grad_norm": 0.6153911472582105,
|
1470 |
+
"learning_rate": 4.2037804246504406e-05,
|
1471 |
+
"loss": 0.4185,
|
1472 |
+
"step": 1045
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.9781089892873778,
|
1476 |
+
"grad_norm": 0.4852026029806901,
|
1477 |
+
"learning_rate": 4.19730709476955e-05,
|
1478 |
+
"loss": 0.4185,
|
1479 |
+
"step": 1050
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.9827666511411272,
|
1483 |
+
"grad_norm": 0.4462069599855887,
|
1484 |
+
"learning_rate": 4.190833764888659e-05,
|
1485 |
+
"loss": 0.4193,
|
1486 |
+
"step": 1055
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.9874243129948765,
|
1490 |
+
"grad_norm": 0.5229879709804952,
|
1491 |
+
"learning_rate": 4.184360435007768e-05,
|
1492 |
+
"loss": 0.4221,
|
1493 |
+
"step": 1060
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.992081974848626,
|
1497 |
+
"grad_norm": 0.9581807172329343,
|
1498 |
+
"learning_rate": 4.177887105126878e-05,
|
1499 |
+
"loss": 0.4193,
|
1500 |
+
"step": 1065
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.9967396367023754,
|
1504 |
+
"grad_norm": 0.6118951656784746,
|
1505 |
+
"learning_rate": 4.171413775245987e-05,
|
1506 |
+
"loss": 0.411,
|
1507 |
+
"step": 1070
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.00093153237075,
|
1511 |
+
"grad_norm": 1.198232600503455,
|
1512 |
+
"learning_rate": 4.164940445365096e-05,
|
1513 |
+
"loss": 0.4222,
|
1514 |
+
"step": 1075
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.0055891942244992,
|
1518 |
+
"grad_norm": 0.6626140255094659,
|
1519 |
+
"learning_rate": 4.158467115484205e-05,
|
1520 |
+
"loss": 0.3643,
|
1521 |
+
"step": 1080
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.0102468560782487,
|
1525 |
+
"grad_norm": 0.6595075009077368,
|
1526 |
+
"learning_rate": 4.151993785603315e-05,
|
1527 |
+
"loss": 0.3533,
|
1528 |
+
"step": 1085
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.0149045179319982,
|
1532 |
+
"grad_norm": 0.6711382033612453,
|
1533 |
+
"learning_rate": 4.1455204557224236e-05,
|
1534 |
+
"loss": 0.3654,
|
1535 |
+
"step": 1090
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.0195621797857475,
|
1539 |
+
"grad_norm": 0.6426521900436137,
|
1540 |
+
"learning_rate": 4.139047125841533e-05,
|
1541 |
+
"loss": 0.3632,
|
1542 |
+
"step": 1095
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.024219841639497,
|
1546 |
+
"grad_norm": 0.5339378895704875,
|
1547 |
+
"learning_rate": 4.132573795960642e-05,
|
1548 |
+
"loss": 0.3656,
|
1549 |
+
"step": 1100
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.0288775034932465,
|
1553 |
+
"grad_norm": 0.5493484057627164,
|
1554 |
+
"learning_rate": 4.1261004660797515e-05,
|
1555 |
+
"loss": 0.3663,
|
1556 |
+
"step": 1105
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.0335351653469957,
|
1560 |
+
"grad_norm": 0.5273400302285899,
|
1561 |
+
"learning_rate": 4.119627136198861e-05,
|
1562 |
+
"loss": 0.3653,
|
1563 |
+
"step": 1110
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.0381928272007452,
|
1567 |
+
"grad_norm": 0.48412616047354784,
|
1568 |
+
"learning_rate": 4.11315380631797e-05,
|
1569 |
+
"loss": 0.3541,
|
1570 |
+
"step": 1115
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.0428504890544947,
|
1574 |
+
"grad_norm": 0.6089370186461038,
|
1575 |
+
"learning_rate": 4.1066804764370794e-05,
|
1576 |
+
"loss": 0.3635,
|
1577 |
+
"step": 1120
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.047508150908244,
|
1581 |
+
"grad_norm": 0.6152489330197201,
|
1582 |
+
"learning_rate": 4.100207146556189e-05,
|
1583 |
+
"loss": 0.3692,
|
1584 |
+
"step": 1125
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.0521658127619935,
|
1588 |
+
"grad_norm": 0.4903458431092099,
|
1589 |
+
"learning_rate": 4.093733816675298e-05,
|
1590 |
+
"loss": 0.3528,
|
1591 |
+
"step": 1130
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.056823474615743,
|
1595 |
+
"grad_norm": 0.45218893931929327,
|
1596 |
+
"learning_rate": 4.087260486794407e-05,
|
1597 |
+
"loss": 0.3641,
|
1598 |
+
"step": 1135
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.0614811364694923,
|
1602 |
+
"grad_norm": 0.5634215362291429,
|
1603 |
+
"learning_rate": 4.0807871569135166e-05,
|
1604 |
+
"loss": 0.3633,
|
1605 |
+
"step": 1140
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.0661387983232418,
|
1609 |
+
"grad_norm": 0.44840145346738985,
|
1610 |
+
"learning_rate": 4.074313827032626e-05,
|
1611 |
+
"loss": 0.3634,
|
1612 |
+
"step": 1145
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.0707964601769913,
|
1616 |
+
"grad_norm": 0.47176553149630446,
|
1617 |
+
"learning_rate": 4.067840497151735e-05,
|
1618 |
+
"loss": 0.3586,
|
1619 |
+
"step": 1150
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.0754541220307405,
|
1623 |
+
"grad_norm": 0.5804511973024695,
|
1624 |
+
"learning_rate": 4.0613671672708445e-05,
|
1625 |
+
"loss": 0.3622,
|
1626 |
+
"step": 1155
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.08011178388449,
|
1630 |
+
"grad_norm": 0.5594430865141662,
|
1631 |
+
"learning_rate": 4.054893837389954e-05,
|
1632 |
+
"loss": 0.3699,
|
1633 |
+
"step": 1160
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.0847694457382393,
|
1637 |
+
"grad_norm": 0.4058236118445243,
|
1638 |
+
"learning_rate": 4.048420507509063e-05,
|
1639 |
+
"loss": 0.3705,
|
1640 |
+
"step": 1165
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.0894271075919888,
|
1644 |
+
"grad_norm": 0.5048270986690303,
|
1645 |
+
"learning_rate": 4.041947177628172e-05,
|
1646 |
+
"loss": 0.3675,
|
1647 |
+
"step": 1170
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.0940847694457383,
|
1651 |
+
"grad_norm": 0.5363220404825172,
|
1652 |
+
"learning_rate": 4.035473847747282e-05,
|
1653 |
+
"loss": 0.3684,
|
1654 |
+
"step": 1175
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.0987424312994876,
|
1658 |
+
"grad_norm": 0.5199102851213286,
|
1659 |
+
"learning_rate": 4.029000517866391e-05,
|
1660 |
+
"loss": 0.36,
|
1661 |
+
"step": 1180
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.103400093153237,
|
1665 |
+
"grad_norm": 0.5335401206236534,
|
1666 |
+
"learning_rate": 4.0225271879854996e-05,
|
1667 |
+
"loss": 0.3611,
|
1668 |
+
"step": 1185
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.1080577550069866,
|
1672 |
+
"grad_norm": 0.3877188665567559,
|
1673 |
+
"learning_rate": 4.016053858104609e-05,
|
1674 |
+
"loss": 0.3428,
|
1675 |
+
"step": 1190
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.1127154168607358,
|
1679 |
+
"grad_norm": 0.47198305564893206,
|
1680 |
+
"learning_rate": 4.009580528223719e-05,
|
1681 |
+
"loss": 0.3521,
|
1682 |
+
"step": 1195
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.1173730787144853,
|
1686 |
+
"grad_norm": 0.4375832663471869,
|
1687 |
+
"learning_rate": 4.0031071983428275e-05,
|
1688 |
+
"loss": 0.36,
|
1689 |
+
"step": 1200
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.1220307405682348,
|
1693 |
+
"grad_norm": 0.5734782102745869,
|
1694 |
+
"learning_rate": 3.996633868461937e-05,
|
1695 |
+
"loss": 0.3692,
|
1696 |
+
"step": 1205
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.126688402421984,
|
1700 |
+
"grad_norm": 0.466632874743288,
|
1701 |
+
"learning_rate": 3.990160538581046e-05,
|
1702 |
+
"loss": 0.3629,
|
1703 |
+
"step": 1210
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.1313460642757336,
|
1707 |
+
"grad_norm": 0.6219265879975726,
|
1708 |
+
"learning_rate": 3.9836872087001554e-05,
|
1709 |
+
"loss": 0.3595,
|
1710 |
+
"step": 1215
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.136003726129483,
|
1714 |
+
"grad_norm": 0.6585230588680556,
|
1715 |
+
"learning_rate": 3.977213878819265e-05,
|
1716 |
+
"loss": 0.3759,
|
1717 |
+
"step": 1220
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.1406613879832324,
|
1721 |
+
"grad_norm": 0.625960144911052,
|
1722 |
+
"learning_rate": 3.970740548938374e-05,
|
1723 |
+
"loss": 0.3608,
|
1724 |
+
"step": 1225
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.1453190498369819,
|
1728 |
+
"grad_norm": 0.5613416054644293,
|
1729 |
+
"learning_rate": 3.964267219057483e-05,
|
1730 |
+
"loss": 0.3591,
|
1731 |
+
"step": 1230
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.1499767116907313,
|
1735 |
+
"grad_norm": 0.6293922717444177,
|
1736 |
+
"learning_rate": 3.9577938891765926e-05,
|
1737 |
+
"loss": 0.3633,
|
1738 |
+
"step": 1235
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.1546343735444806,
|
1742 |
+
"grad_norm": 0.4382344516265855,
|
1743 |
+
"learning_rate": 3.951320559295702e-05,
|
1744 |
+
"loss": 0.3673,
|
1745 |
+
"step": 1240
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.1592920353982301,
|
1749 |
+
"grad_norm": 0.43635813377518307,
|
1750 |
+
"learning_rate": 3.944847229414811e-05,
|
1751 |
+
"loss": 0.3694,
|
1752 |
+
"step": 1245
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.1639496972519794,
|
1756 |
+
"grad_norm": 0.6486802446293214,
|
1757 |
+
"learning_rate": 3.9383738995339205e-05,
|
1758 |
+
"loss": 0.3721,
|
1759 |
+
"step": 1250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 1.1686073591057289,
|
1763 |
+
"grad_norm": 0.5468009019040315,
|
1764 |
+
"learning_rate": 3.93190056965303e-05,
|
1765 |
+
"loss": 0.3594,
|
1766 |
+
"step": 1255
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.1732650209594784,
|
1770 |
+
"grad_norm": 0.4992784524933434,
|
1771 |
+
"learning_rate": 3.925427239772139e-05,
|
1772 |
+
"loss": 0.3723,
|
1773 |
+
"step": 1260
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.1779226828132279,
|
1777 |
+
"grad_norm": 0.48099901440871706,
|
1778 |
+
"learning_rate": 3.9189539098912484e-05,
|
1779 |
+
"loss": 0.3733,
|
1780 |
+
"step": 1265
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 1.1825803446669771,
|
1784 |
+
"grad_norm": 0.5099848543509489,
|
1785 |
+
"learning_rate": 3.912480580010358e-05,
|
1786 |
+
"loss": 0.3531,
|
1787 |
+
"step": 1270
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.1872380065207266,
|
1791 |
+
"grad_norm": 0.5202936478101648,
|
1792 |
+
"learning_rate": 3.906007250129467e-05,
|
1793 |
+
"loss": 0.3637,
|
1794 |
+
"step": 1275
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.191895668374476,
|
1798 |
+
"grad_norm": 0.534882109326889,
|
1799 |
+
"learning_rate": 3.8995339202485756e-05,
|
1800 |
+
"loss": 0.3689,
|
1801 |
+
"step": 1280
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.1965533302282254,
|
1805 |
+
"grad_norm": 0.5919980159275785,
|
1806 |
+
"learning_rate": 3.8930605903676856e-05,
|
1807 |
+
"loss": 0.3712,
|
1808 |
+
"step": 1285
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.201210992081975,
|
1812 |
+
"grad_norm": 0.6393674652244553,
|
1813 |
+
"learning_rate": 3.886587260486795e-05,
|
1814 |
+
"loss": 0.3609,
|
1815 |
+
"step": 1290
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.2058686539357242,
|
1819 |
+
"grad_norm": 0.449384764222771,
|
1820 |
+
"learning_rate": 3.8801139306059035e-05,
|
1821 |
+
"loss": 0.3633,
|
1822 |
+
"step": 1295
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 1.2105263157894737,
|
1826 |
+
"grad_norm": 0.5892594923823059,
|
1827 |
+
"learning_rate": 3.873640600725013e-05,
|
1828 |
+
"loss": 0.3595,
|
1829 |
+
"step": 1300
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.2151839776432232,
|
1833 |
+
"grad_norm": 0.5334687166327565,
|
1834 |
+
"learning_rate": 3.867167270844123e-05,
|
1835 |
+
"loss": 0.3699,
|
1836 |
+
"step": 1305
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.2198416394969724,
|
1840 |
+
"grad_norm": 0.44268921628250013,
|
1841 |
+
"learning_rate": 3.8606939409632314e-05,
|
1842 |
+
"loss": 0.3722,
|
1843 |
+
"step": 1310
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.224499301350722,
|
1847 |
+
"grad_norm": 0.4291582971347598,
|
1848 |
+
"learning_rate": 3.854220611082341e-05,
|
1849 |
+
"loss": 0.3619,
|
1850 |
+
"step": 1315
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.2291569632044714,
|
1854 |
+
"grad_norm": 0.4336800197463241,
|
1855 |
+
"learning_rate": 3.84774728120145e-05,
|
1856 |
+
"loss": 0.3715,
|
1857 |
+
"step": 1320
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.2338146250582207,
|
1861 |
+
"grad_norm": 0.4443708683400446,
|
1862 |
+
"learning_rate": 3.841273951320559e-05,
|
1863 |
+
"loss": 0.3622,
|
1864 |
+
"step": 1325
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.2384722869119702,
|
1868 |
+
"grad_norm": 0.427129846430766,
|
1869 |
+
"learning_rate": 3.8348006214396686e-05,
|
1870 |
+
"loss": 0.3692,
|
1871 |
+
"step": 1330
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.2431299487657197,
|
1875 |
+
"grad_norm": 0.5591150556223793,
|
1876 |
+
"learning_rate": 3.828327291558778e-05,
|
1877 |
+
"loss": 0.3622,
|
1878 |
+
"step": 1335
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.247787610619469,
|
1882 |
+
"grad_norm": 0.5657209049937582,
|
1883 |
+
"learning_rate": 3.821853961677888e-05,
|
1884 |
+
"loss": 0.3637,
|
1885 |
+
"step": 1340
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.2524452724732185,
|
1889 |
+
"grad_norm": 0.49877057776070494,
|
1890 |
+
"learning_rate": 3.8153806317969965e-05,
|
1891 |
+
"loss": 0.3533,
|
1892 |
+
"step": 1345
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.257102934326968,
|
1896 |
+
"grad_norm": 0.5817369057575189,
|
1897 |
+
"learning_rate": 3.808907301916106e-05,
|
1898 |
+
"loss": 0.3633,
|
1899 |
+
"step": 1350
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.2617605961807172,
|
1903 |
+
"grad_norm": 0.5874812736984852,
|
1904 |
+
"learning_rate": 3.802433972035215e-05,
|
1905 |
+
"loss": 0.3594,
|
1906 |
+
"step": 1355
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.2664182580344667,
|
1910 |
+
"grad_norm": 0.6207126846666516,
|
1911 |
+
"learning_rate": 3.7959606421543244e-05,
|
1912 |
+
"loss": 0.3528,
|
1913 |
+
"step": 1360
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.271075919888216,
|
1917 |
+
"grad_norm": 0.5366782936079324,
|
1918 |
+
"learning_rate": 3.789487312273434e-05,
|
1919 |
+
"loss": 0.3656,
|
1920 |
+
"step": 1365
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.2757335817419655,
|
1924 |
+
"grad_norm": 0.5830667256592843,
|
1925 |
+
"learning_rate": 3.783013982392543e-05,
|
1926 |
+
"loss": 0.3634,
|
1927 |
+
"step": 1370
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.280391243595715,
|
1931 |
+
"grad_norm": 0.535133020380144,
|
1932 |
+
"learning_rate": 3.776540652511652e-05,
|
1933 |
+
"loss": 0.3638,
|
1934 |
+
"step": 1375
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.2850489054494645,
|
1938 |
+
"grad_norm": 0.5605033732100219,
|
1939 |
+
"learning_rate": 3.7700673226307616e-05,
|
1940 |
+
"loss": 0.3634,
|
1941 |
+
"step": 1380
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.2897065673032138,
|
1945 |
+
"grad_norm": 0.6454282897245199,
|
1946 |
+
"learning_rate": 3.763593992749871e-05,
|
1947 |
+
"loss": 0.3617,
|
1948 |
+
"step": 1385
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 1.2943642291569633,
|
1952 |
+
"grad_norm": 0.569922823326428,
|
1953 |
+
"learning_rate": 3.7571206628689795e-05,
|
1954 |
+
"loss": 0.3715,
|
1955 |
+
"step": 1390
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.2990218910107125,
|
1959 |
+
"grad_norm": 0.7489830344450082,
|
1960 |
+
"learning_rate": 3.7506473329880895e-05,
|
1961 |
+
"loss": 0.4492,
|
1962 |
+
"step": 1395
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.303679552864462,
|
1966 |
+
"grad_norm": 0.5804151095364183,
|
1967 |
+
"learning_rate": 3.744174003107199e-05,
|
1968 |
+
"loss": 0.3672,
|
1969 |
+
"step": 1400
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.3083372147182115,
|
1973 |
+
"grad_norm": 0.45978003988666893,
|
1974 |
+
"learning_rate": 3.7377006732263074e-05,
|
1975 |
+
"loss": 0.3602,
|
1976 |
+
"step": 1405
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.312994876571961,
|
1980 |
+
"grad_norm": 0.4805974767093187,
|
1981 |
+
"learning_rate": 3.731227343345417e-05,
|
1982 |
+
"loss": 0.3589,
|
1983 |
+
"step": 1410
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.3176525384257103,
|
1987 |
+
"grad_norm": 0.4846107371473044,
|
1988 |
+
"learning_rate": 3.724754013464527e-05,
|
1989 |
+
"loss": 0.3775,
|
1990 |
+
"step": 1415
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 1.3223102002794598,
|
1994 |
+
"grad_norm": 0.44140763746654454,
|
1995 |
+
"learning_rate": 3.718280683583635e-05,
|
1996 |
+
"loss": 0.3649,
|
1997 |
+
"step": 1420
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 1.326967862133209,
|
2001 |
+
"grad_norm": 0.3981869098899127,
|
2002 |
+
"learning_rate": 3.7118073537027446e-05,
|
2003 |
+
"loss": 0.3609,
|
2004 |
+
"step": 1425
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 1.3316255239869585,
|
2008 |
+
"grad_norm": 0.6646189023622765,
|
2009 |
+
"learning_rate": 3.705334023821854e-05,
|
2010 |
+
"loss": 0.361,
|
2011 |
+
"step": 1430
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 1.336283185840708,
|
2015 |
+
"grad_norm": 0.5190775947864457,
|
2016 |
+
"learning_rate": 3.698860693940964e-05,
|
2017 |
+
"loss": 0.3651,
|
2018 |
+
"step": 1435
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.3409408476944573,
|
2022 |
+
"grad_norm": 0.4665782605567536,
|
2023 |
+
"learning_rate": 3.6923873640600725e-05,
|
2024 |
+
"loss": 0.3637,
|
2025 |
+
"step": 1440
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.3455985095482068,
|
2029 |
+
"grad_norm": 0.533120751391509,
|
2030 |
+
"learning_rate": 3.685914034179182e-05,
|
2031 |
+
"loss": 0.3705,
|
2032 |
+
"step": 1445
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 1.350256171401956,
|
2036 |
+
"grad_norm": 0.4454321342916118,
|
2037 |
+
"learning_rate": 3.679440704298292e-05,
|
2038 |
+
"loss": 0.3606,
|
2039 |
+
"step": 1450
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 1.3549138332557056,
|
2043 |
+
"grad_norm": 0.43930714074978666,
|
2044 |
+
"learning_rate": 3.6729673744174004e-05,
|
2045 |
+
"loss": 0.3699,
|
2046 |
+
"step": 1455
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.359571495109455,
|
2050 |
+
"grad_norm": 0.5051073774169964,
|
2051 |
+
"learning_rate": 3.66649404453651e-05,
|
2052 |
+
"loss": 0.3542,
|
2053 |
+
"step": 1460
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 1.3642291569632046,
|
2057 |
+
"grad_norm": 0.4914786128754226,
|
2058 |
+
"learning_rate": 3.660020714655619e-05,
|
2059 |
+
"loss": 0.3611,
|
2060 |
+
"step": 1465
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.3688868188169538,
|
2064 |
+
"grad_norm": 0.48917577891457625,
|
2065 |
+
"learning_rate": 3.653547384774728e-05,
|
2066 |
+
"loss": 0.3647,
|
2067 |
+
"step": 1470
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.3735444806707033,
|
2071 |
+
"grad_norm": 0.5218401916805995,
|
2072 |
+
"learning_rate": 3.6470740548938376e-05,
|
2073 |
+
"loss": 0.3601,
|
2074 |
+
"step": 1475
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 1.3782021425244526,
|
2078 |
+
"grad_norm": 0.4542309075740912,
|
2079 |
+
"learning_rate": 3.640600725012947e-05,
|
2080 |
+
"loss": 0.3603,
|
2081 |
+
"step": 1480
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.382859804378202,
|
2085 |
+
"grad_norm": 0.593114065460838,
|
2086 |
+
"learning_rate": 3.634127395132056e-05,
|
2087 |
+
"loss": 0.3667,
|
2088 |
+
"step": 1485
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.3875174662319516,
|
2092 |
+
"grad_norm": 0.7061630570341471,
|
2093 |
+
"learning_rate": 3.6276540652511655e-05,
|
2094 |
+
"loss": 0.3684,
|
2095 |
+
"step": 1490
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 1.392175128085701,
|
2099 |
+
"grad_norm": 1.1149409130136005,
|
2100 |
+
"learning_rate": 3.621180735370275e-05,
|
2101 |
+
"loss": 0.4374,
|
2102 |
+
"step": 1495
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.3968327899394504,
|
2106 |
+
"grad_norm": 1.7493220952744504,
|
2107 |
+
"learning_rate": 3.6147074054893834e-05,
|
2108 |
+
"loss": 0.7659,
|
2109 |
+
"step": 1500
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.4014904517931999,
|
2113 |
+
"grad_norm": 0.8169838033128435,
|
2114 |
+
"learning_rate": 3.6082340756084934e-05,
|
2115 |
+
"loss": 0.3708,
|
2116 |
+
"step": 1505
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 1.4061481136469491,
|
2120 |
+
"grad_norm": 0.6343950966738808,
|
2121 |
+
"learning_rate": 3.601760745727603e-05,
|
2122 |
+
"loss": 0.3651,
|
2123 |
+
"step": 1510
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.4108057755006986,
|
2127 |
+
"grad_norm": 0.722357376224152,
|
2128 |
+
"learning_rate": 3.595287415846711e-05,
|
2129 |
+
"loss": 0.3735,
|
2130 |
+
"step": 1515
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.4154634373544481,
|
2134 |
+
"grad_norm": 0.5665404433376358,
|
2135 |
+
"learning_rate": 3.5888140859658206e-05,
|
2136 |
+
"loss": 0.3658,
|
2137 |
+
"step": 1520
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.4201210992081974,
|
2141 |
+
"grad_norm": 0.5893727155297599,
|
2142 |
+
"learning_rate": 3.5823407560849306e-05,
|
2143 |
+
"loss": 0.3653,
|
2144 |
+
"step": 1525
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.424778761061947,
|
2148 |
+
"grad_norm": 0.5476427446105051,
|
2149 |
+
"learning_rate": 3.57586742620404e-05,
|
2150 |
+
"loss": 0.3557,
|
2151 |
+
"step": 1530
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.4294364229156964,
|
2155 |
+
"grad_norm": 0.691182790002671,
|
2156 |
+
"learning_rate": 3.5693940963231485e-05,
|
2157 |
+
"loss": 0.3706,
|
2158 |
+
"step": 1535
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 1.4340940847694457,
|
2162 |
+
"grad_norm": 0.46156409326817516,
|
2163 |
+
"learning_rate": 3.5629207664422585e-05,
|
2164 |
+
"loss": 0.3614,
|
2165 |
+
"step": 1540
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.4387517466231952,
|
2169 |
+
"grad_norm": 0.4598532920012943,
|
2170 |
+
"learning_rate": 3.556447436561368e-05,
|
2171 |
+
"loss": 0.3631,
|
2172 |
+
"step": 1545
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.4434094084769447,
|
2176 |
+
"grad_norm": 0.4380166097581896,
|
2177 |
+
"learning_rate": 3.5499741066804764e-05,
|
2178 |
+
"loss": 0.3583,
|
2179 |
+
"step": 1550
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 1.448067070330694,
|
2183 |
+
"grad_norm": 0.4064716472176242,
|
2184 |
+
"learning_rate": 3.543500776799586e-05,
|
2185 |
+
"loss": 0.3533,
|
2186 |
+
"step": 1555
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.4527247321844434,
|
2190 |
+
"grad_norm": 0.4548851529702526,
|
2191 |
+
"learning_rate": 3.537027446918696e-05,
|
2192 |
+
"loss": 0.3599,
|
2193 |
+
"step": 1560
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.4573823940381927,
|
2197 |
+
"grad_norm": 0.36916212723651665,
|
2198 |
+
"learning_rate": 3.530554117037804e-05,
|
2199 |
+
"loss": 0.3685,
|
2200 |
+
"step": 1565
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 1.4620400558919422,
|
2204 |
+
"grad_norm": 0.5066725999452286,
|
2205 |
+
"learning_rate": 3.5240807871569136e-05,
|
2206 |
+
"loss": 0.381,
|
2207 |
+
"step": 1570
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 1.4666977177456917,
|
2211 |
+
"grad_norm": 0.4774024861164161,
|
2212 |
+
"learning_rate": 3.517607457276023e-05,
|
2213 |
+
"loss": 0.3635,
|
2214 |
+
"step": 1575
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 1.4713553795994412,
|
2218 |
+
"grad_norm": 0.5930294981464446,
|
2219 |
+
"learning_rate": 3.511134127395132e-05,
|
2220 |
+
"loss": 0.355,
|
2221 |
+
"step": 1580
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 1.4760130414531905,
|
2225 |
+
"grad_norm": 0.6683615507217858,
|
2226 |
+
"learning_rate": 3.5046607975142415e-05,
|
2227 |
+
"loss": 0.3632,
|
2228 |
+
"step": 1585
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.48067070330694,
|
2232 |
+
"grad_norm": 0.47781095190925266,
|
2233 |
+
"learning_rate": 3.498187467633351e-05,
|
2234 |
+
"loss": 0.3651,
|
2235 |
+
"step": 1590
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.4853283651606892,
|
2239 |
+
"grad_norm": 0.4816343305435411,
|
2240 |
+
"learning_rate": 3.49171413775246e-05,
|
2241 |
+
"loss": 0.361,
|
2242 |
+
"step": 1595
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 1.4899860270144387,
|
2246 |
+
"grad_norm": 0.36945600164162296,
|
2247 |
+
"learning_rate": 3.4852408078715694e-05,
|
2248 |
+
"loss": 0.3664,
|
2249 |
+
"step": 1600
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 1.4946436888681882,
|
2253 |
+
"grad_norm": 0.42161998754880686,
|
2254 |
+
"learning_rate": 3.478767477990679e-05,
|
2255 |
+
"loss": 0.3566,
|
2256 |
+
"step": 1605
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 1.4993013507219377,
|
2260 |
+
"grad_norm": 0.43171270393570554,
|
2261 |
+
"learning_rate": 3.472294148109787e-05,
|
2262 |
+
"loss": 0.3638,
|
2263 |
+
"step": 1610
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 1.503959012575687,
|
2267 |
+
"grad_norm": 0.49449118003805265,
|
2268 |
+
"learning_rate": 3.465820818228897e-05,
|
2269 |
+
"loss": 0.3616,
|
2270 |
+
"step": 1615
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.5086166744294365,
|
2274 |
+
"grad_norm": 0.5126145855254146,
|
2275 |
+
"learning_rate": 3.4593474883480066e-05,
|
2276 |
+
"loss": 0.3627,
|
2277 |
+
"step": 1620
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 1.5132743362831858,
|
2281 |
+
"grad_norm": 0.4825580222932842,
|
2282 |
+
"learning_rate": 3.452874158467116e-05,
|
2283 |
+
"loss": 0.3666,
|
2284 |
+
"step": 1625
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 1.5179319981369352,
|
2288 |
+
"grad_norm": 0.5265848281578551,
|
2289 |
+
"learning_rate": 3.4464008285862245e-05,
|
2290 |
+
"loss": 0.3633,
|
2291 |
+
"step": 1630
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 1.5225896599906847,
|
2295 |
+
"grad_norm": 0.4810011855595015,
|
2296 |
+
"learning_rate": 3.4399274987053345e-05,
|
2297 |
+
"loss": 0.3748,
|
2298 |
+
"step": 1635
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 1.5272473218444342,
|
2302 |
+
"grad_norm": 0.4566927190333215,
|
2303 |
+
"learning_rate": 3.433454168824444e-05,
|
2304 |
+
"loss": 0.3673,
|
2305 |
+
"step": 1640
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.5319049836981835,
|
2309 |
+
"grad_norm": 0.46400710872493467,
|
2310 |
+
"learning_rate": 3.4269808389435524e-05,
|
2311 |
+
"loss": 0.3711,
|
2312 |
+
"step": 1645
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.5365626455519328,
|
2316 |
+
"grad_norm": 3.1087721003712434,
|
2317 |
+
"learning_rate": 3.4205075090626624e-05,
|
2318 |
+
"loss": 0.356,
|
2319 |
+
"step": 1650
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 1.5412203074056823,
|
2323 |
+
"grad_norm": 0.5034579559440693,
|
2324 |
+
"learning_rate": 3.414034179181772e-05,
|
2325 |
+
"loss": 0.3552,
|
2326 |
+
"step": 1655
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 1.5458779692594318,
|
2330 |
+
"grad_norm": 0.4780598324542499,
|
2331 |
+
"learning_rate": 3.40756084930088e-05,
|
2332 |
+
"loss": 0.355,
|
2333 |
+
"step": 1660
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 1.5505356311131813,
|
2337 |
+
"grad_norm": 0.5764212486237088,
|
2338 |
+
"learning_rate": 3.4010875194199896e-05,
|
2339 |
+
"loss": 0.3676,
|
2340 |
+
"step": 1665
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 1.5551932929669308,
|
2344 |
+
"grad_norm": 0.5517039007987018,
|
2345 |
+
"learning_rate": 3.3946141895390996e-05,
|
2346 |
+
"loss": 0.3636,
|
2347 |
+
"step": 1670
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 1.55985095482068,
|
2351 |
+
"grad_norm": 0.5058857939828647,
|
2352 |
+
"learning_rate": 3.388140859658208e-05,
|
2353 |
+
"loss": 0.362,
|
2354 |
+
"step": 1675
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.5645086166744293,
|
2358 |
+
"grad_norm": 0.43254113359686863,
|
2359 |
+
"learning_rate": 3.3816675297773175e-05,
|
2360 |
+
"loss": 0.3689,
|
2361 |
+
"step": 1680
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.5691662785281788,
|
2365 |
+
"grad_norm": 0.4639020956548089,
|
2366 |
+
"learning_rate": 3.375194199896427e-05,
|
2367 |
+
"loss": 0.3571,
|
2368 |
+
"step": 1685
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 1.5738239403819283,
|
2372 |
+
"grad_norm": 0.5001606568137839,
|
2373 |
+
"learning_rate": 3.368720870015536e-05,
|
2374 |
+
"loss": 0.3644,
|
2375 |
+
"step": 1690
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 1.5784816022356778,
|
2379 |
+
"grad_norm": 0.4373315768297557,
|
2380 |
+
"learning_rate": 3.3622475401346454e-05,
|
2381 |
+
"loss": 0.3612,
|
2382 |
+
"step": 1695
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 1.583139264089427,
|
2386 |
+
"grad_norm": 0.4139251174179008,
|
2387 |
+
"learning_rate": 3.355774210253755e-05,
|
2388 |
+
"loss": 0.3658,
|
2389 |
+
"step": 1700
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 1.5877969259431766,
|
2393 |
+
"grad_norm": 0.4322065090656477,
|
2394 |
+
"learning_rate": 3.349300880372864e-05,
|
2395 |
+
"loss": 0.3591,
|
2396 |
+
"step": 1705
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 1.5924545877969258,
|
2400 |
+
"grad_norm": 0.4970626082566968,
|
2401 |
+
"learning_rate": 3.342827550491973e-05,
|
2402 |
+
"loss": 0.3663,
|
2403 |
+
"step": 1710
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 1.5971122496506753,
|
2407 |
+
"grad_norm": 0.4705280367004464,
|
2408 |
+
"learning_rate": 3.3363542206110826e-05,
|
2409 |
+
"loss": 0.3671,
|
2410 |
+
"step": 1715
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 1.6017699115044248,
|
2414 |
+
"grad_norm": 0.43124848527955606,
|
2415 |
+
"learning_rate": 3.329880890730191e-05,
|
2416 |
+
"loss": 0.3537,
|
2417 |
+
"step": 1720
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 1.6064275733581743,
|
2421 |
+
"grad_norm": 0.5258412470469775,
|
2422 |
+
"learning_rate": 3.323407560849301e-05,
|
2423 |
+
"loss": 0.3603,
|
2424 |
+
"step": 1725
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 1.6110852352119236,
|
2428 |
+
"grad_norm": 0.4396848395121731,
|
2429 |
+
"learning_rate": 3.3169342309684105e-05,
|
2430 |
+
"loss": 0.372,
|
2431 |
+
"step": 1730
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 1.6157428970656729,
|
2435 |
+
"grad_norm": 0.4275239821085271,
|
2436 |
+
"learning_rate": 3.31046090108752e-05,
|
2437 |
+
"loss": 0.3715,
|
2438 |
+
"step": 1735
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 1.6204005589194224,
|
2442 |
+
"grad_norm": 0.47043887246154587,
|
2443 |
+
"learning_rate": 3.3039875712066284e-05,
|
2444 |
+
"loss": 0.3523,
|
2445 |
+
"step": 1740
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 1.6250582207731719,
|
2449 |
+
"grad_norm": 0.4830833939098779,
|
2450 |
+
"learning_rate": 3.2975142413257384e-05,
|
2451 |
+
"loss": 0.3823,
|
2452 |
+
"step": 1745
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 1.6297158826269214,
|
2456 |
+
"grad_norm": 0.363713578471795,
|
2457 |
+
"learning_rate": 3.291040911444848e-05,
|
2458 |
+
"loss": 0.3601,
|
2459 |
+
"step": 1750
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 1.6343735444806708,
|
2463 |
+
"grad_norm": 0.4199388157747959,
|
2464 |
+
"learning_rate": 3.284567581563956e-05,
|
2465 |
+
"loss": 0.3702,
|
2466 |
+
"step": 1755
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 1.6390312063344201,
|
2470 |
+
"grad_norm": 0.42626426655806804,
|
2471 |
+
"learning_rate": 3.278094251683066e-05,
|
2472 |
+
"loss": 0.3554,
|
2473 |
+
"step": 1760
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 1.6436888681881694,
|
2477 |
+
"grad_norm": 0.567374135835316,
|
2478 |
+
"learning_rate": 3.2716209218021756e-05,
|
2479 |
+
"loss": 0.359,
|
2480 |
+
"step": 1765
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 1.648346530041919,
|
2484 |
+
"grad_norm": 0.43110033232228706,
|
2485 |
+
"learning_rate": 3.265147591921284e-05,
|
2486 |
+
"loss": 0.3542,
|
2487 |
+
"step": 1770
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 1.6530041918956684,
|
2491 |
+
"grad_norm": 0.5238869056328617,
|
2492 |
+
"learning_rate": 3.2586742620403935e-05,
|
2493 |
+
"loss": 0.3678,
|
2494 |
+
"step": 1775
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 1.6576618537494179,
|
2498 |
+
"grad_norm": 0.49792087625873993,
|
2499 |
+
"learning_rate": 3.2522009321595035e-05,
|
2500 |
+
"loss": 0.3566,
|
2501 |
+
"step": 1780
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 1.6623195156031674,
|
2505 |
+
"grad_norm": 0.44022742289658967,
|
2506 |
+
"learning_rate": 3.245727602278612e-05,
|
2507 |
+
"loss": 0.3644,
|
2508 |
+
"step": 1785
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 1.6669771774569166,
|
2512 |
+
"grad_norm": 0.4020789247285759,
|
2513 |
+
"learning_rate": 3.2392542723977214e-05,
|
2514 |
+
"loss": 0.3558,
|
2515 |
+
"step": 1790
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 1.671634839310666,
|
2519 |
+
"grad_norm": 0.46941803599205045,
|
2520 |
+
"learning_rate": 3.232780942516831e-05,
|
2521 |
+
"loss": 0.3554,
|
2522 |
+
"step": 1795
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 1.6762925011644154,
|
2526 |
+
"grad_norm": 0.44615738959074275,
|
2527 |
+
"learning_rate": 3.22630761263594e-05,
|
2528 |
+
"loss": 0.3532,
|
2529 |
+
"step": 1800
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 1.680950163018165,
|
2533 |
+
"grad_norm": 0.5307510022659958,
|
2534 |
+
"learning_rate": 3.219834282755049e-05,
|
2535 |
+
"loss": 0.3613,
|
2536 |
+
"step": 1805
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 1.6856078248719144,
|
2540 |
+
"grad_norm": 0.43074684583169204,
|
2541 |
+
"learning_rate": 3.2133609528741586e-05,
|
2542 |
+
"loss": 0.3596,
|
2543 |
+
"step": 1810
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 1.6902654867256637,
|
2547 |
+
"grad_norm": 0.45453772826067634,
|
2548 |
+
"learning_rate": 3.206887622993268e-05,
|
2549 |
+
"loss": 0.3605,
|
2550 |
+
"step": 1815
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 1.6949231485794132,
|
2554 |
+
"grad_norm": 0.39694233100152826,
|
2555 |
+
"learning_rate": 3.200414293112377e-05,
|
2556 |
+
"loss": 0.3484,
|
2557 |
+
"step": 1820
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 1.6995808104331624,
|
2561 |
+
"grad_norm": 0.48125790946047087,
|
2562 |
+
"learning_rate": 3.1939409632314865e-05,
|
2563 |
+
"loss": 0.351,
|
2564 |
+
"step": 1825
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 1.704238472286912,
|
2568 |
+
"grad_norm": 0.42999870591028383,
|
2569 |
+
"learning_rate": 3.187467633350596e-05,
|
2570 |
+
"loss": 0.356,
|
2571 |
+
"step": 1830
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 1.7088961341406614,
|
2575 |
+
"grad_norm": 0.46596362181549944,
|
2576 |
+
"learning_rate": 3.180994303469705e-05,
|
2577 |
+
"loss": 0.3632,
|
2578 |
+
"step": 1835
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 1.713553795994411,
|
2582 |
+
"grad_norm": 0.4325609693374574,
|
2583 |
+
"learning_rate": 3.1745209735888144e-05,
|
2584 |
+
"loss": 0.3575,
|
2585 |
+
"step": 1840
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 1.7182114578481602,
|
2589 |
+
"grad_norm": 0.41540892625043885,
|
2590 |
+
"learning_rate": 3.168047643707924e-05,
|
2591 |
+
"loss": 0.3628,
|
2592 |
+
"step": 1845
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 1.7228691197019095,
|
2596 |
+
"grad_norm": 0.4031078505421204,
|
2597 |
+
"learning_rate": 3.161574313827032e-05,
|
2598 |
+
"loss": 0.3703,
|
2599 |
+
"step": 1850
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 1.727526781555659,
|
2603 |
+
"grad_norm": 0.41838515198339477,
|
2604 |
+
"learning_rate": 3.155100983946142e-05,
|
2605 |
+
"loss": 0.3518,
|
2606 |
+
"step": 1855
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 1.7321844434094085,
|
2610 |
+
"grad_norm": 0.45646943466714157,
|
2611 |
+
"learning_rate": 3.1486276540652516e-05,
|
2612 |
+
"loss": 0.3755,
|
2613 |
+
"step": 1860
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 1.736842105263158,
|
2617 |
+
"grad_norm": 0.585084433635785,
|
2618 |
+
"learning_rate": 3.14215432418436e-05,
|
2619 |
+
"loss": 0.3552,
|
2620 |
+
"step": 1865
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 1.7414997671169075,
|
2624 |
+
"grad_norm": 0.3911867696777629,
|
2625 |
+
"learning_rate": 3.13568099430347e-05,
|
2626 |
+
"loss": 0.3595,
|
2627 |
+
"step": 1870
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 1.7461574289706567,
|
2631 |
+
"grad_norm": 0.4680970227691401,
|
2632 |
+
"learning_rate": 3.1292076644225795e-05,
|
2633 |
+
"loss": 0.3749,
|
2634 |
+
"step": 1875
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 1.750815090824406,
|
2638 |
+
"grad_norm": 0.5489571566456214,
|
2639 |
+
"learning_rate": 3.122734334541688e-05,
|
2640 |
+
"loss": 0.3652,
|
2641 |
+
"step": 1880
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 1.7554727526781555,
|
2645 |
+
"grad_norm": 0.539830040482289,
|
2646 |
+
"learning_rate": 3.1162610046607974e-05,
|
2647 |
+
"loss": 0.3672,
|
2648 |
+
"step": 1885
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 1.760130414531905,
|
2652 |
+
"grad_norm": 0.540754916595141,
|
2653 |
+
"learning_rate": 3.1097876747799074e-05,
|
2654 |
+
"loss": 0.3641,
|
2655 |
+
"step": 1890
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 1.7647880763856545,
|
2659 |
+
"grad_norm": 0.5219699672209992,
|
2660 |
+
"learning_rate": 3.103314344899016e-05,
|
2661 |
+
"loss": 0.373,
|
2662 |
+
"step": 1895
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 1.7694457382394038,
|
2666 |
+
"grad_norm": 0.377337385788726,
|
2667 |
+
"learning_rate": 3.096841015018125e-05,
|
2668 |
+
"loss": 0.3611,
|
2669 |
+
"step": 1900
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 1.7741034000931533,
|
2673 |
+
"grad_norm": 0.48563812072688267,
|
2674 |
+
"learning_rate": 3.0903676851372346e-05,
|
2675 |
+
"loss": 0.3625,
|
2676 |
+
"step": 1905
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 1.7787610619469025,
|
2680 |
+
"grad_norm": 0.5845893805457868,
|
2681 |
+
"learning_rate": 3.083894355256344e-05,
|
2682 |
+
"loss": 0.3551,
|
2683 |
+
"step": 1910
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 1.783418723800652,
|
2687 |
+
"grad_norm": 0.5664348577055764,
|
2688 |
+
"learning_rate": 3.077421025375453e-05,
|
2689 |
+
"loss": 0.3508,
|
2690 |
+
"step": 1915
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 1.7880763856544015,
|
2694 |
+
"grad_norm": 0.4921575417307053,
|
2695 |
+
"learning_rate": 3.0709476954945625e-05,
|
2696 |
+
"loss": 0.3564,
|
2697 |
+
"step": 1920
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 1.792734047508151,
|
2701 |
+
"grad_norm": 0.41530413831923074,
|
2702 |
+
"learning_rate": 3.064474365613672e-05,
|
2703 |
+
"loss": 0.3644,
|
2704 |
+
"step": 1925
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 1.7973917093619003,
|
2708 |
+
"grad_norm": 0.45996940636819483,
|
2709 |
+
"learning_rate": 3.058001035732781e-05,
|
2710 |
+
"loss": 0.354,
|
2711 |
+
"step": 1930
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 1.8020493712156498,
|
2715 |
+
"grad_norm": 0.5159015527502255,
|
2716 |
+
"learning_rate": 3.0515277058518904e-05,
|
2717 |
+
"loss": 0.3509,
|
2718 |
+
"step": 1935
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 1.806707033069399,
|
2722 |
+
"grad_norm": 0.5152021259341406,
|
2723 |
+
"learning_rate": 3.045054375971e-05,
|
2724 |
+
"loss": 0.353,
|
2725 |
+
"step": 1940
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 1.8113646949231486,
|
2729 |
+
"grad_norm": 0.42063698743452166,
|
2730 |
+
"learning_rate": 3.0385810460901086e-05,
|
2731 |
+
"loss": 0.3635,
|
2732 |
+
"step": 1945
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 1.816022356776898,
|
2736 |
+
"grad_norm": 0.4197227843543687,
|
2737 |
+
"learning_rate": 3.0321077162092183e-05,
|
2738 |
+
"loss": 0.3552,
|
2739 |
+
"step": 1950
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 1.8206800186306475,
|
2743 |
+
"grad_norm": 0.4386043250783782,
|
2744 |
+
"learning_rate": 3.0256343863283276e-05,
|
2745 |
+
"loss": 0.3584,
|
2746 |
+
"step": 1955
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 1.8253376804843968,
|
2750 |
+
"grad_norm": 0.43078152623180066,
|
2751 |
+
"learning_rate": 3.0191610564474365e-05,
|
2752 |
+
"loss": 0.3594,
|
2753 |
+
"step": 1960
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 1.829995342338146,
|
2757 |
+
"grad_norm": 0.41453786330622155,
|
2758 |
+
"learning_rate": 3.0126877265665458e-05,
|
2759 |
+
"loss": 0.3617,
|
2760 |
+
"step": 1965
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 1.8346530041918956,
|
2764 |
+
"grad_norm": 0.44407746662226144,
|
2765 |
+
"learning_rate": 3.0062143966856555e-05,
|
2766 |
+
"loss": 0.3563,
|
2767 |
+
"step": 1970
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 1.839310666045645,
|
2771 |
+
"grad_norm": 0.4867694541510763,
|
2772 |
+
"learning_rate": 2.9997410668047644e-05,
|
2773 |
+
"loss": 0.362,
|
2774 |
+
"step": 1975
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 1.8439683278993946,
|
2778 |
+
"grad_norm": 0.40475826775733315,
|
2779 |
+
"learning_rate": 2.9932677369238737e-05,
|
2780 |
+
"loss": 0.3543,
|
2781 |
+
"step": 1980
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 1.848625989753144,
|
2785 |
+
"grad_norm": 0.439099325394701,
|
2786 |
+
"learning_rate": 2.9867944070429834e-05,
|
2787 |
+
"loss": 0.3683,
|
2788 |
+
"step": 1985
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 1.8532836516068933,
|
2792 |
+
"grad_norm": 0.45176402716808195,
|
2793 |
+
"learning_rate": 2.980321077162092e-05,
|
2794 |
+
"loss": 0.3627,
|
2795 |
+
"step": 1990
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 1.8579413134606426,
|
2799 |
+
"grad_norm": 0.39408125423927187,
|
2800 |
+
"learning_rate": 2.9738477472812016e-05,
|
2801 |
+
"loss": 0.3499,
|
2802 |
+
"step": 1995
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 1.8625989753143921,
|
2806 |
+
"grad_norm": 0.37626176509085807,
|
2807 |
+
"learning_rate": 2.967374417400311e-05,
|
2808 |
+
"loss": 0.3594,
|
2809 |
+
"step": 2000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 1.8672566371681416,
|
2813 |
+
"grad_norm": 0.481992098530276,
|
2814 |
+
"learning_rate": 2.96090108751942e-05,
|
2815 |
+
"loss": 0.3655,
|
2816 |
+
"step": 2005
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 1.871914299021891,
|
2820 |
+
"grad_norm": 0.5134713155275991,
|
2821 |
+
"learning_rate": 2.9544277576385292e-05,
|
2822 |
+
"loss": 0.3577,
|
2823 |
+
"step": 2010
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 1.8765719608756404,
|
2827 |
+
"grad_norm": 0.45283837936405347,
|
2828 |
+
"learning_rate": 2.9479544277576388e-05,
|
2829 |
+
"loss": 0.3674,
|
2830 |
+
"step": 2015
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 1.8812296227293899,
|
2834 |
+
"grad_norm": 0.5331456148592331,
|
2835 |
+
"learning_rate": 2.941481097876748e-05,
|
2836 |
+
"loss": 0.3547,
|
2837 |
+
"step": 2020
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 1.8858872845831391,
|
2841 |
+
"grad_norm": 0.39483636058222715,
|
2842 |
+
"learning_rate": 2.935007767995857e-05,
|
2843 |
+
"loss": 0.3587,
|
2844 |
+
"step": 2025
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 1.8905449464368886,
|
2848 |
+
"grad_norm": 0.4169841661038559,
|
2849 |
+
"learning_rate": 2.9285344381149664e-05,
|
2850 |
+
"loss": 0.3562,
|
2851 |
+
"step": 2030
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 1.8952026082906381,
|
2855 |
+
"grad_norm": 0.43263533560964307,
|
2856 |
+
"learning_rate": 2.922061108234076e-05,
|
2857 |
+
"loss": 0.3539,
|
2858 |
+
"step": 2035
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 1.8998602701443876,
|
2862 |
+
"grad_norm": 1.0528416955125015,
|
2863 |
+
"learning_rate": 2.915587778353185e-05,
|
2864 |
+
"loss": 0.3656,
|
2865 |
+
"step": 2040
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 1.904517931998137,
|
2869 |
+
"grad_norm": 0.46126800798411016,
|
2870 |
+
"learning_rate": 2.9091144484722943e-05,
|
2871 |
+
"loss": 0.3663,
|
2872 |
+
"step": 2045
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 1.9091755938518864,
|
2876 |
+
"grad_norm": 0.439289961393162,
|
2877 |
+
"learning_rate": 2.902641118591404e-05,
|
2878 |
+
"loss": 0.3611,
|
2879 |
+
"step": 2050
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 1.9138332557056357,
|
2883 |
+
"grad_norm": 0.4075534808040331,
|
2884 |
+
"learning_rate": 2.8961677887105125e-05,
|
2885 |
+
"loss": 0.3595,
|
2886 |
+
"step": 2055
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 1.9184909175593852,
|
2890 |
+
"grad_norm": 0.44070429368587694,
|
2891 |
+
"learning_rate": 2.889694458829622e-05,
|
2892 |
+
"loss": 0.3554,
|
2893 |
+
"step": 2060
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 1.9231485794131347,
|
2897 |
+
"grad_norm": 0.4205873258048559,
|
2898 |
+
"learning_rate": 2.8832211289487315e-05,
|
2899 |
+
"loss": 0.3575,
|
2900 |
+
"step": 2065
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 1.9278062412668842,
|
2904 |
+
"grad_norm": 0.43443666788930957,
|
2905 |
+
"learning_rate": 2.8767477990678404e-05,
|
2906 |
+
"loss": 0.3598,
|
2907 |
+
"step": 2070
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 1.9324639031206334,
|
2911 |
+
"grad_norm": 0.4455711783118789,
|
2912 |
+
"learning_rate": 2.8702744691869497e-05,
|
2913 |
+
"loss": 0.3591,
|
2914 |
+
"step": 2075
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 1.9371215649743827,
|
2918 |
+
"grad_norm": 0.4633217530624874,
|
2919 |
+
"learning_rate": 2.8638011393060594e-05,
|
2920 |
+
"loss": 0.352,
|
2921 |
+
"step": 2080
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 1.9417792268281322,
|
2925 |
+
"grad_norm": 0.5993966669585514,
|
2926 |
+
"learning_rate": 2.8573278094251683e-05,
|
2927 |
+
"loss": 0.3624,
|
2928 |
+
"step": 2085
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 1.9464368886818817,
|
2932 |
+
"grad_norm": 0.47925709795843613,
|
2933 |
+
"learning_rate": 2.8508544795442776e-05,
|
2934 |
+
"loss": 0.347,
|
2935 |
+
"step": 2090
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 1.9510945505356312,
|
2939 |
+
"grad_norm": 0.47665074915536965,
|
2940 |
+
"learning_rate": 2.8443811496633873e-05,
|
2941 |
+
"loss": 0.3548,
|
2942 |
+
"step": 2095
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 1.9557522123893807,
|
2946 |
+
"grad_norm": 0.40675691505800643,
|
2947 |
+
"learning_rate": 2.837907819782496e-05,
|
2948 |
+
"loss": 0.3562,
|
2949 |
+
"step": 2100
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 1.96040987424313,
|
2953 |
+
"grad_norm": 0.4625409302809586,
|
2954 |
+
"learning_rate": 2.8314344899016055e-05,
|
2955 |
+
"loss": 0.3644,
|
2956 |
+
"step": 2105
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 1.9650675360968792,
|
2960 |
+
"grad_norm": 0.5689003662588716,
|
2961 |
+
"learning_rate": 2.8249611600207148e-05,
|
2962 |
+
"loss": 0.3484,
|
2963 |
+
"step": 2110
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 1.9697251979506287,
|
2967 |
+
"grad_norm": 0.5279179832753244,
|
2968 |
+
"learning_rate": 2.8184878301398244e-05,
|
2969 |
+
"loss": 0.3563,
|
2970 |
+
"step": 2115
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 1.9743828598043782,
|
2974 |
+
"grad_norm": 0.4038383583754883,
|
2975 |
+
"learning_rate": 2.812014500258933e-05,
|
2976 |
+
"loss": 0.3593,
|
2977 |
+
"step": 2120
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 1.9790405216581277,
|
2981 |
+
"grad_norm": 0.4094844987063613,
|
2982 |
+
"learning_rate": 2.8055411703780427e-05,
|
2983 |
+
"loss": 0.3547,
|
2984 |
+
"step": 2125
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 1.983698183511877,
|
2988 |
+
"grad_norm": 0.40606227898532676,
|
2989 |
+
"learning_rate": 2.799067840497152e-05,
|
2990 |
+
"loss": 0.3564,
|
2991 |
+
"step": 2130
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 1.9883558453656265,
|
2995 |
+
"grad_norm": 0.39391611988157177,
|
2996 |
+
"learning_rate": 2.792594510616261e-05,
|
2997 |
+
"loss": 0.3628,
|
2998 |
+
"step": 2135
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 1.9930135072193758,
|
3002 |
+
"grad_norm": 0.5333474858390276,
|
3003 |
+
"learning_rate": 2.7861211807353703e-05,
|
3004 |
+
"loss": 0.3614,
|
3005 |
+
"step": 2140
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 1.9976711690731253,
|
3009 |
+
"grad_norm": 0.4886820775711789,
|
3010 |
+
"learning_rate": 2.77964785085448e-05,
|
3011 |
+
"loss": 0.3619,
|
3012 |
+
"step": 2145
|
3013 |
+
}
|
3014 |
+
],
|
3015 |
+
"logging_steps": 5,
|
3016 |
+
"max_steps": 4292,
|
3017 |
+
"num_input_tokens_seen": 0,
|
3018 |
+
"num_train_epochs": 4,
|
3019 |
+
"save_steps": 500,
|
3020 |
+
"stateful_callbacks": {
|
3021 |
+
"TrainerControl": {
|
3022 |
+
"args": {
|
3023 |
+
"should_epoch_stop": false,
|
3024 |
+
"should_evaluate": false,
|
3025 |
+
"should_log": false,
|
3026 |
+
"should_save": true,
|
3027 |
+
"should_training_stop": false
|
3028 |
+
},
|
3029 |
+
"attributes": {}
|
3030 |
+
}
|
3031 |
+
},
|
3032 |
+
"total_flos": 1.8391372660484342e+18,
|
3033 |
+
"train_batch_size": 1,
|
3034 |
+
"trial_name": null,
|
3035 |
+
"trial_params": null
|
3036 |
+
}
|
checkpoint-2148/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e05f31de2ff1ea05b6b40008fe030314954a34489cd1e304ab649211e4763d9
|
3 |
+
size 7416
|
checkpoint-2148/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2148/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|