ZMC2019 commited on
Commit
6881733
·
verified ·
1 Parent(s): 14751cd

Training in progress, epoch 2, checkpoint

Browse files
Files changed (42) hide show
  1. checkpoint-2148/added_tokens.json +24 -0
  2. checkpoint-2148/config.json +29 -0
  3. checkpoint-2148/generation_config.json +14 -0
  4. checkpoint-2148/global_step2147/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-2148/global_step2147/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-2148/global_step2147/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-2148/global_step2147/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-2148/global_step2147/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-2148/global_step2147/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-2148/global_step2147/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-2148/global_step2147/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-2148/global_step2147/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-2148/global_step2147/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-2148/global_step2147/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-2148/global_step2147/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-2148/global_step2147/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-2148/global_step2147/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-2148/global_step2147/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-2148/global_step2147/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-2148/latest +1 -0
  21. checkpoint-2148/merges.txt +0 -0
  22. checkpoint-2148/model-00001-of-00004.safetensors +3 -0
  23. checkpoint-2148/model-00002-of-00004.safetensors +3 -0
  24. checkpoint-2148/model-00003-of-00004.safetensors +3 -0
  25. checkpoint-2148/model-00004-of-00004.safetensors +3 -0
  26. checkpoint-2148/model.safetensors.index.json +542 -0
  27. checkpoint-2148/rng_state_0.pth +3 -0
  28. checkpoint-2148/rng_state_1.pth +3 -0
  29. checkpoint-2148/rng_state_2.pth +3 -0
  30. checkpoint-2148/rng_state_3.pth +3 -0
  31. checkpoint-2148/rng_state_4.pth +3 -0
  32. checkpoint-2148/rng_state_5.pth +3 -0
  33. checkpoint-2148/rng_state_6.pth +3 -0
  34. checkpoint-2148/rng_state_7.pth +3 -0
  35. checkpoint-2148/scheduler.pt +3 -0
  36. checkpoint-2148/special_tokens_map.json +25 -0
  37. checkpoint-2148/tokenizer.json +3 -0
  38. checkpoint-2148/tokenizer_config.json +208 -0
  39. checkpoint-2148/trainer_state.json +3036 -0
  40. checkpoint-2148/training_args.bin +3 -0
  41. checkpoint-2148/vocab.json +0 -0
  42. checkpoint-2148/zero_to_fp32.py +674 -0
checkpoint-2148/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-2148/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen7B-HP-AMP",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-2148/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
checkpoint-2148/global_step2147/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a14daf30692502ce252c3f6c4e6e9c96e13063c40997518152cf68670a06154b
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6cf7676fd4a0a1c0c39ce8885b957d1ade8d6f3d30da90a92f18b759c7ec459
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d83b166b6ca9a9f85c0fc497d4f1d6b8071a315f9a930eb723a94ea9de937605
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ab55f44d5b66bc9e37586e4bd27b237fd231f188e81bcf8dad197429625700
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84e4d52bbdeee3c4f0be515e84a02773f186b5118616912b96df9a9df9587d64
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:488778e4b68f24b47595f60dedb597e82c822f1c9c29a3061869bf4536aed1c8
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:765f05b468e6a3e8bae4fe3356cf92d556ba38fb1ed18cae6fc9d5f0c51a4b75
3
+ size 12117257612
checkpoint-2148/global_step2147/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cb186d2204b2751307c769bd799a9d21c69497050a49f931bd093142f539080
3
+ size 12117257612
checkpoint-2148/global_step2147/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac16b658db01c302634ccaf139eb49471821ce0eb58eda48f92dfc0bf6d6a283
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b679a7a8adb74687d574da41a488c5180c991df681e6f5aeff97fba683ccec8
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbfb8c014e9620d18aee8d7add1593439632ec8e9ea9866c4cde80096f46bed9
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc41e6276ec67247b79af681021e39e7d368cdef5df0c097007c3a9b82295b61
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9296d159e43f551899e0010470cac82d9f99058ab6ac4134d583a88b4475b7df
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16885cd3cd98ae22ff3a19415d5211753288d4f662c973be46cc3c7a7e17d029
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a3ca1b330100f1cfb8923af5c53dd6402373f2a68a2e36cc4d0c13f2634f012
3
+ size 256905
checkpoint-2148/global_step2147/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c401b6b35dfcc48e28491d7818dcd2cb1c266f0994727e8153909f1d135c90eb
3
+ size 256905
checkpoint-2148/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2147
checkpoint-2148/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2148/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f42241f6128380cb284363f9040077a885bcd14611e318b4b2d0d05175f65a9
3
+ size 4947447072
checkpoint-2148/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19d963e5fc4f412d1a266ac8097800ae2ff396a16233fdf20617bc2402601ae9
3
+ size 4991571912
checkpoint-2148/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88ea8f8c052cf813720fe7e1f763a4fd33893bd10bca7cb5c88be90e9f4d569
3
+ size 4991571984
checkpoint-2148/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0fbb2ab89a491cd0720ab931baa1c8e23d5fe4f8299d6f4b3b5802c6fc7e0e0
3
+ size 1225807416
checkpoint-2148/model.safetensors.index.json ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16156336672
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
33
+ "model.layers.1.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.1.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
35
+ "model.layers.1.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.1.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
37
+ "model.layers.1.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
38
+ "model.layers.1.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.10.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
52
+ "model.layers.10.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.10.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
54
+ "model.layers.10.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.10.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
56
+ "model.layers.10.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
57
+ "model.layers.10.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
59
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
64
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.11.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
71
+ "model.layers.11.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.11.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
73
+ "model.layers.11.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.11.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
75
+ "model.layers.11.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
76
+ "model.layers.11.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
81
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
83
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.12.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
90
+ "model.layers.12.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.12.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
92
+ "model.layers.12.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.12.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
94
+ "model.layers.12.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
95
+ "model.layers.12.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
97
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
100
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.13.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
109
+ "model.layers.13.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.13.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.13.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.13.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
113
+ "model.layers.13.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.13.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
119
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
121
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.14.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.14.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.14.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
130
+ "model.layers.14.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.14.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
132
+ "model.layers.14.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
133
+ "model.layers.14.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
135
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
138
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
140
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.15.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
147
+ "model.layers.15.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.15.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
149
+ "model.layers.15.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.15.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
151
+ "model.layers.15.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
152
+ "model.layers.15.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
154
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
157
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
159
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.16.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
166
+ "model.layers.16.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.16.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
168
+ "model.layers.16.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.16.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
170
+ "model.layers.16.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
171
+ "model.layers.16.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
173
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
176
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
178
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.17.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
185
+ "model.layers.17.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.17.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
187
+ "model.layers.17.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.17.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
189
+ "model.layers.17.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
190
+ "model.layers.17.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
192
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
195
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
197
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.18.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
204
+ "model.layers.18.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.18.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.18.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.18.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
208
+ "model.layers.18.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.18.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
214
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
216
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.19.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.19.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.19.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
225
+ "model.layers.19.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.19.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
227
+ "model.layers.19.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
228
+ "model.layers.19.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.2.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
242
+ "model.layers.2.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.2.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
244
+ "model.layers.2.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.2.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
246
+ "model.layers.2.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
247
+ "model.layers.2.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
249
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
252
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
254
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.20.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
261
+ "model.layers.20.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.20.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
263
+ "model.layers.20.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.20.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
265
+ "model.layers.20.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.20.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
268
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
273
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.21.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
280
+ "model.layers.21.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.21.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
282
+ "model.layers.21.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.21.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
284
+ "model.layers.21.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
285
+ "model.layers.21.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
287
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
290
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
292
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.22.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
299
+ "model.layers.22.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.22.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
301
+ "model.layers.22.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.22.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
303
+ "model.layers.22.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
304
+ "model.layers.22.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
306
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
309
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
311
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.23.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
318
+ "model.layers.23.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.23.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
320
+ "model.layers.23.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.23.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
322
+ "model.layers.23.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
323
+ "model.layers.23.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
325
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
328
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
330
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.24.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
337
+ "model.layers.24.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.24.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
339
+ "model.layers.24.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.24.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
341
+ "model.layers.24.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
342
+ "model.layers.24.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
343
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
344
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
345
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
347
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
349
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
350
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.25.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
356
+ "model.layers.25.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.25.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
358
+ "model.layers.25.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.25.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
360
+ "model.layers.25.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
361
+ "model.layers.25.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
362
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
363
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
365
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
366
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
367
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
368
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
369
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
370
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
371
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
372
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
373
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
374
+ "model.layers.26.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
375
+ "model.layers.26.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
376
+ "model.layers.26.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
377
+ "model.layers.26.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
378
+ "model.layers.26.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
379
+ "model.layers.26.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
380
+ "model.layers.26.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
381
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
382
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
383
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
384
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
385
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
386
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
387
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
388
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
389
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
390
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
391
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
392
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
393
+ "model.layers.27.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
394
+ "model.layers.27.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
395
+ "model.layers.27.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
396
+ "model.layers.27.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
397
+ "model.layers.27.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
398
+ "model.layers.27.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
399
+ "model.layers.27.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
400
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
401
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
402
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
403
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
404
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
405
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
406
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
407
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.3.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
413
+ "model.layers.3.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.3.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
415
+ "model.layers.3.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.3.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
417
+ "model.layers.3.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
418
+ "model.layers.3.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
420
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
422
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
423
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
425
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
427
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
428
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
429
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
430
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
431
+ "model.layers.4.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
432
+ "model.layers.4.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
433
+ "model.layers.4.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
434
+ "model.layers.4.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.layers.4.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
436
+ "model.layers.4.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
437
+ "model.layers.4.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
438
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
439
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
440
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
441
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
442
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
443
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
444
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
445
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
446
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
447
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
448
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
449
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
450
+ "model.layers.5.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
451
+ "model.layers.5.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
452
+ "model.layers.5.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
453
+ "model.layers.5.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
454
+ "model.layers.5.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
455
+ "model.layers.5.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
456
+ "model.layers.5.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
457
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
458
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
459
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
460
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
461
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
462
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
463
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
464
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
465
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
466
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
467
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
469
+ "model.layers.6.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
470
+ "model.layers.6.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
471
+ "model.layers.6.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
472
+ "model.layers.6.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
473
+ "model.layers.6.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
474
+ "model.layers.6.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
475
+ "model.layers.6.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
476
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
477
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
478
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
479
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
480
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
481
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
482
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
483
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
484
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
485
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
486
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
487
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
488
+ "model.layers.7.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
489
+ "model.layers.7.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
490
+ "model.layers.7.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
491
+ "model.layers.7.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
492
+ "model.layers.7.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
493
+ "model.layers.7.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
494
+ "model.layers.7.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
495
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
496
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
497
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
498
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
499
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
500
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
501
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
502
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
503
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
504
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
505
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
506
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
507
+ "model.layers.8.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
508
+ "model.layers.8.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
509
+ "model.layers.8.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
510
+ "model.layers.8.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
511
+ "model.layers.8.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
512
+ "model.layers.8.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
513
+ "model.layers.8.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
514
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
515
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
516
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
517
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
518
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
519
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
520
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
521
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
522
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
523
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
524
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
525
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
526
+ "model.layers.9.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
527
+ "model.layers.9.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
528
+ "model.layers.9.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
529
+ "model.layers.9.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
530
+ "model.layers.9.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
531
+ "model.layers.9.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
532
+ "model.layers.9.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
533
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
534
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
535
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
536
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
537
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
538
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
539
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
540
+ "model.norm.weight": "model-00004-of-00004.safetensors"
541
+ }
542
+ }
checkpoint-2148/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
3
+ size 15984
checkpoint-2148/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
3
+ size 15984
checkpoint-2148/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
3
+ size 15984
checkpoint-2148/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
3
+ size 15984
checkpoint-2148/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
3
+ size 15984
checkpoint-2148/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
3
+ size 15984
checkpoint-2148/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
3
+ size 15984
checkpoint-2148/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
3
+ size 15984
checkpoint-2148/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56570f0b9c4a46ef6adafa222772f59b17d6eaad0a5bc9228f66bdf0ffeeffc0
3
+ size 1064
checkpoint-2148/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-2148/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-2148/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-2148/trainer_state.json ADDED
@@ -0,0 +1,3036 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2148,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004657661853749418,
13
+ "grad_norm": 27.66617259818207,
14
+ "learning_rate": 5.813953488372093e-07,
15
+ "loss": 1.2864,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.009315323707498836,
20
+ "grad_norm": 19.626216359351606,
21
+ "learning_rate": 1.1627906976744186e-06,
22
+ "loss": 1.2277,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.013972985561248253,
27
+ "grad_norm": 7.689899823367007,
28
+ "learning_rate": 1.744186046511628e-06,
29
+ "loss": 1.0529,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.018630647414997672,
34
+ "grad_norm": 4.9632975953671465,
35
+ "learning_rate": 2.325581395348837e-06,
36
+ "loss": 0.907,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.02328830926874709,
41
+ "grad_norm": 2.000237294817273,
42
+ "learning_rate": 2.9069767441860468e-06,
43
+ "loss": 0.7884,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.027945971122496506,
48
+ "grad_norm": 1.3650044798865562,
49
+ "learning_rate": 3.488372093023256e-06,
50
+ "loss": 0.7091,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.032603632976245925,
55
+ "grad_norm": 1.0145438785392298,
56
+ "learning_rate": 4.0697674418604655e-06,
57
+ "loss": 0.6666,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.037261294829995344,
62
+ "grad_norm": 0.7666883370082983,
63
+ "learning_rate": 4.651162790697674e-06,
64
+ "loss": 0.6289,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.04191895668374476,
69
+ "grad_norm": 0.6977041513064055,
70
+ "learning_rate": 5.232558139534884e-06,
71
+ "loss": 0.5772,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.04657661853749418,
76
+ "grad_norm": 0.6177135531852819,
77
+ "learning_rate": 5.8139534883720935e-06,
78
+ "loss": 0.5729,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.05123428039124359,
83
+ "grad_norm": 0.5909988418524453,
84
+ "learning_rate": 6.395348837209303e-06,
85
+ "loss": 0.5555,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.05589194224499301,
90
+ "grad_norm": 0.6995185567241584,
91
+ "learning_rate": 6.976744186046512e-06,
92
+ "loss": 0.5472,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.06054960409874243,
97
+ "grad_norm": 0.7744854841742352,
98
+ "learning_rate": 7.558139534883721e-06,
99
+ "loss": 0.5379,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.06520726595249185,
104
+ "grad_norm": 0.5473128068676195,
105
+ "learning_rate": 8.139534883720931e-06,
106
+ "loss": 0.5149,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.06986492780624126,
111
+ "grad_norm": 0.711636506166052,
112
+ "learning_rate": 8.72093023255814e-06,
113
+ "loss": 0.5151,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.07452258965999069,
118
+ "grad_norm": 0.6813906468319959,
119
+ "learning_rate": 9.302325581395349e-06,
120
+ "loss": 0.5252,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.0791802515137401,
125
+ "grad_norm": 0.7134287439415516,
126
+ "learning_rate": 9.883720930232558e-06,
127
+ "loss": 0.5024,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.08383791336748952,
132
+ "grad_norm": 0.6992933648203333,
133
+ "learning_rate": 1.0465116279069768e-05,
134
+ "loss": 0.5085,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.08849557522123894,
139
+ "grad_norm": 0.6462820616067007,
140
+ "learning_rate": 1.1046511627906977e-05,
141
+ "loss": 0.5129,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.09315323707498836,
146
+ "grad_norm": 0.67397577790992,
147
+ "learning_rate": 1.1627906976744187e-05,
148
+ "loss": 0.5034,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.09781089892873777,
153
+ "grad_norm": 0.7146380645525483,
154
+ "learning_rate": 1.2209302325581395e-05,
155
+ "loss": 0.506,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.10246856078248719,
160
+ "grad_norm": 0.7569877075727182,
161
+ "learning_rate": 1.2790697674418606e-05,
162
+ "loss": 0.4939,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.10712622263623661,
167
+ "grad_norm": 0.5765767741771239,
168
+ "learning_rate": 1.3372093023255814e-05,
169
+ "loss": 0.4932,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.11178388448998602,
174
+ "grad_norm": 0.7689970599513694,
175
+ "learning_rate": 1.3953488372093024e-05,
176
+ "loss": 0.5041,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.11644154634373545,
181
+ "grad_norm": 0.7710814056961762,
182
+ "learning_rate": 1.4534883720930233e-05,
183
+ "loss": 0.4846,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.12109920819748486,
188
+ "grad_norm": 0.8067799411588391,
189
+ "learning_rate": 1.5116279069767441e-05,
190
+ "loss": 0.4868,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.1257568700512343,
195
+ "grad_norm": 0.7337587312339595,
196
+ "learning_rate": 1.569767441860465e-05,
197
+ "loss": 0.4937,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.1304145319049837,
202
+ "grad_norm": 0.8156553975576142,
203
+ "learning_rate": 1.6279069767441862e-05,
204
+ "loss": 0.4871,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.1350721937587331,
209
+ "grad_norm": 0.9350450002033659,
210
+ "learning_rate": 1.686046511627907e-05,
211
+ "loss": 0.4972,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.13972985561248252,
216
+ "grad_norm": 0.7681334266478443,
217
+ "learning_rate": 1.744186046511628e-05,
218
+ "loss": 0.4907,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.14438751746623196,
223
+ "grad_norm": 0.84555038297673,
224
+ "learning_rate": 1.802325581395349e-05,
225
+ "loss": 0.4723,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.14904517931998137,
230
+ "grad_norm": 0.8372039362868026,
231
+ "learning_rate": 1.8604651162790697e-05,
232
+ "loss": 0.4793,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.1537028411737308,
237
+ "grad_norm": 0.7817304569895932,
238
+ "learning_rate": 1.918604651162791e-05,
239
+ "loss": 0.4798,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.1583605030274802,
244
+ "grad_norm": 0.9789922595882735,
245
+ "learning_rate": 1.9767441860465116e-05,
246
+ "loss": 0.4783,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.1630181648812296,
251
+ "grad_norm": 0.7335091977994727,
252
+ "learning_rate": 2.0348837209302328e-05,
253
+ "loss": 0.4893,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.16767582673497905,
258
+ "grad_norm": 0.8155578488051264,
259
+ "learning_rate": 2.0930232558139536e-05,
260
+ "loss": 0.484,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.17233348858872846,
265
+ "grad_norm": 0.8144677339935327,
266
+ "learning_rate": 2.1511627906976744e-05,
267
+ "loss": 0.482,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.17699115044247787,
272
+ "grad_norm": 0.8341691871989111,
273
+ "learning_rate": 2.2093023255813955e-05,
274
+ "loss": 0.4753,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.18164881229622729,
279
+ "grad_norm": 0.7550827853742104,
280
+ "learning_rate": 2.2674418604651163e-05,
281
+ "loss": 0.4811,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.18630647414997673,
286
+ "grad_norm": 0.726150592947813,
287
+ "learning_rate": 2.3255813953488374e-05,
288
+ "loss": 0.4548,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.19096413600372614,
293
+ "grad_norm": 0.9618454710454514,
294
+ "learning_rate": 2.3837209302325582e-05,
295
+ "loss": 0.4765,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.19562179785747555,
300
+ "grad_norm": 0.8357087005031101,
301
+ "learning_rate": 2.441860465116279e-05,
302
+ "loss": 0.4664,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.20027945971122496,
307
+ "grad_norm": 0.9769412255461828,
308
+ "learning_rate": 2.5e-05,
309
+ "loss": 0.4772,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.20493712156497437,
314
+ "grad_norm": 0.819002974551843,
315
+ "learning_rate": 2.5581395348837212e-05,
316
+ "loss": 0.4731,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.2095947834187238,
321
+ "grad_norm": 1.0374332843969527,
322
+ "learning_rate": 2.616279069767442e-05,
323
+ "loss": 0.4763,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.21425244527247322,
328
+ "grad_norm": 0.8985668587375348,
329
+ "learning_rate": 2.674418604651163e-05,
330
+ "loss": 0.4745,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.21891010712622264,
335
+ "grad_norm": 1.0814445549381904,
336
+ "learning_rate": 2.7325581395348836e-05,
337
+ "loss": 0.4695,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.22356776897997205,
342
+ "grad_norm": 1.0714624697860875,
343
+ "learning_rate": 2.7906976744186048e-05,
344
+ "loss": 0.4687,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.22822543083372146,
349
+ "grad_norm": 0.9839374258594388,
350
+ "learning_rate": 2.848837209302326e-05,
351
+ "loss": 0.4598,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.2328830926874709,
356
+ "grad_norm": 0.9846036088169035,
357
+ "learning_rate": 2.9069767441860467e-05,
358
+ "loss": 0.4569,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.2375407545412203,
363
+ "grad_norm": 0.7487150924303477,
364
+ "learning_rate": 2.9651162790697678e-05,
365
+ "loss": 0.4676,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.24219841639496972,
370
+ "grad_norm": 0.8226804932307876,
371
+ "learning_rate": 3.0232558139534883e-05,
372
+ "loss": 0.4722,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.24685607824871914,
377
+ "grad_norm": 0.7711022626726491,
378
+ "learning_rate": 3.081395348837209e-05,
379
+ "loss": 0.4658,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.2515137401024686,
384
+ "grad_norm": 0.8932122698414526,
385
+ "learning_rate": 3.13953488372093e-05,
386
+ "loss": 0.4557,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.25617140195621796,
391
+ "grad_norm": 0.7549553477075355,
392
+ "learning_rate": 3.197674418604651e-05,
393
+ "loss": 0.4716,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.2608290638099674,
398
+ "grad_norm": 1.203597171762952,
399
+ "learning_rate": 3.2558139534883724e-05,
400
+ "loss": 0.4602,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.26548672566371684,
405
+ "grad_norm": 0.6877770638858097,
406
+ "learning_rate": 3.313953488372093e-05,
407
+ "loss": 0.4589,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.2701443875174662,
412
+ "grad_norm": 0.9865065100124113,
413
+ "learning_rate": 3.372093023255814e-05,
414
+ "loss": 0.4577,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.27480204937121566,
419
+ "grad_norm": 0.9375168702189124,
420
+ "learning_rate": 3.430232558139535e-05,
421
+ "loss": 0.4516,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.27945971122496505,
426
+ "grad_norm": 0.7788845536490606,
427
+ "learning_rate": 3.488372093023256e-05,
428
+ "loss": 0.4633,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.2841173730787145,
433
+ "grad_norm": 0.8098072656748624,
434
+ "learning_rate": 3.5465116279069774e-05,
435
+ "loss": 0.4691,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.2887750349324639,
440
+ "grad_norm": 1.3633357913402282,
441
+ "learning_rate": 3.604651162790698e-05,
442
+ "loss": 0.4662,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.2934326967862133,
447
+ "grad_norm": 0.8073757027557402,
448
+ "learning_rate": 3.662790697674418e-05,
449
+ "loss": 0.4551,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.29809035863996275,
454
+ "grad_norm": 1.0699898191361614,
455
+ "learning_rate": 3.7209302325581394e-05,
456
+ "loss": 0.4614,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.30274802049371213,
461
+ "grad_norm": 0.7424537685527064,
462
+ "learning_rate": 3.7790697674418606e-05,
463
+ "loss": 0.4637,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.3074056823474616,
468
+ "grad_norm": 1.0663211887340074,
469
+ "learning_rate": 3.837209302325582e-05,
470
+ "loss": 0.463,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.312063344201211,
475
+ "grad_norm": 0.9616713033039357,
476
+ "learning_rate": 3.895348837209303e-05,
477
+ "loss": 0.4483,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.3167210060549604,
482
+ "grad_norm": 0.9289014338139833,
483
+ "learning_rate": 3.953488372093023e-05,
484
+ "loss": 0.4618,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.32137866790870984,
489
+ "grad_norm": 0.9205940376448726,
490
+ "learning_rate": 4.0116279069767444e-05,
491
+ "loss": 0.4516,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.3260363297624592,
496
+ "grad_norm": 0.9475824983358404,
497
+ "learning_rate": 4.0697674418604655e-05,
498
+ "loss": 0.4545,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.33069399161620866,
503
+ "grad_norm": 1.315055782839884,
504
+ "learning_rate": 4.127906976744187e-05,
505
+ "loss": 0.452,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.3353516534699581,
510
+ "grad_norm": 1.068696802277167,
511
+ "learning_rate": 4.186046511627907e-05,
512
+ "loss": 0.4625,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.3400093153237075,
517
+ "grad_norm": 1.036508382207286,
518
+ "learning_rate": 4.2441860465116276e-05,
519
+ "loss": 0.4615,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.3446669771774569,
524
+ "grad_norm": 0.9771206427059291,
525
+ "learning_rate": 4.302325581395349e-05,
526
+ "loss": 0.472,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.3493246390312063,
531
+ "grad_norm": 0.9364995309041826,
532
+ "learning_rate": 4.36046511627907e-05,
533
+ "loss": 0.4662,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.35398230088495575,
538
+ "grad_norm": 0.8666798423814609,
539
+ "learning_rate": 4.418604651162791e-05,
540
+ "loss": 0.4513,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.3586399627387052,
545
+ "grad_norm": 0.6625516854940565,
546
+ "learning_rate": 4.476744186046512e-05,
547
+ "loss": 0.4458,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.36329762459245457,
552
+ "grad_norm": 0.5910994980517921,
553
+ "learning_rate": 4.5348837209302326e-05,
554
+ "loss": 0.4518,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.367955286446204,
559
+ "grad_norm": 0.8576114090853963,
560
+ "learning_rate": 4.593023255813954e-05,
561
+ "loss": 0.4472,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.37261294829995345,
566
+ "grad_norm": 1.059751439208873,
567
+ "learning_rate": 4.651162790697675e-05,
568
+ "loss": 0.4453,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.37727061015370283,
573
+ "grad_norm": 0.7913724415049757,
574
+ "learning_rate": 4.709302325581396e-05,
575
+ "loss": 0.4492,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.3819282720074523,
580
+ "grad_norm": 0.7471961729660666,
581
+ "learning_rate": 4.7674418604651164e-05,
582
+ "loss": 0.4559,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.38658593386120166,
587
+ "grad_norm": 0.7938017748454547,
588
+ "learning_rate": 4.8255813953488375e-05,
589
+ "loss": 0.4556,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.3912435957149511,
594
+ "grad_norm": 0.861398782650763,
595
+ "learning_rate": 4.883720930232558e-05,
596
+ "loss": 0.4457,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.39590125756870054,
601
+ "grad_norm": 1.164899725237036,
602
+ "learning_rate": 4.941860465116279e-05,
603
+ "loss": 0.4619,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.4005589194224499,
608
+ "grad_norm": 0.9327630997758065,
609
+ "learning_rate": 5e-05,
610
+ "loss": 0.4553,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.40521658127619936,
615
+ "grad_norm": 0.7755438754585425,
616
+ "learning_rate": 4.9935266701191095e-05,
617
+ "loss": 0.4589,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.40987424312994875,
622
+ "grad_norm": 0.6084430372051816,
623
+ "learning_rate": 4.987053340238219e-05,
624
+ "loss": 0.4659,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.4145319049836982,
629
+ "grad_norm": 0.706361406749313,
630
+ "learning_rate": 4.980580010357328e-05,
631
+ "loss": 0.4454,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.4191895668374476,
636
+ "grad_norm": 0.8310997319677449,
637
+ "learning_rate": 4.9741066804764374e-05,
638
+ "loss": 0.4492,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.423847228691197,
643
+ "grad_norm": 0.7992980724203008,
644
+ "learning_rate": 4.967633350595546e-05,
645
+ "loss": 0.4677,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.42850489054494645,
650
+ "grad_norm": 0.7848440239850348,
651
+ "learning_rate": 4.961160020714656e-05,
652
+ "loss": 0.4484,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.43316255239869583,
657
+ "grad_norm": 0.6875355874505797,
658
+ "learning_rate": 4.954686690833765e-05,
659
+ "loss": 0.4592,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.43782021425244527,
664
+ "grad_norm": 0.9019111936374453,
665
+ "learning_rate": 4.948213360952874e-05,
666
+ "loss": 0.4507,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.4424778761061947,
671
+ "grad_norm": 0.9237443867694993,
672
+ "learning_rate": 4.941740031071983e-05,
673
+ "loss": 0.46,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.4471355379599441,
678
+ "grad_norm": 0.7227765777311265,
679
+ "learning_rate": 4.935266701191093e-05,
680
+ "loss": 0.4448,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.45179319981369354,
685
+ "grad_norm": 0.7627976373615327,
686
+ "learning_rate": 4.9287933713102025e-05,
687
+ "loss": 0.4467,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.4564508616674429,
692
+ "grad_norm": 0.8963050574087497,
693
+ "learning_rate": 4.922320041429311e-05,
694
+ "loss": 0.45,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.46110852352119236,
699
+ "grad_norm": 0.629147905901097,
700
+ "learning_rate": 4.915846711548421e-05,
701
+ "loss": 0.4427,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.4657661853749418,
706
+ "grad_norm": 0.5883243359451029,
707
+ "learning_rate": 4.9093733816675304e-05,
708
+ "loss": 0.4491,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.4704238472286912,
713
+ "grad_norm": 0.5369867711481909,
714
+ "learning_rate": 4.902900051786639e-05,
715
+ "loss": 0.4435,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.4750815090824406,
720
+ "grad_norm": 0.7877373044239472,
721
+ "learning_rate": 4.8964267219057483e-05,
722
+ "loss": 0.4392,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.47973917093619,
727
+ "grad_norm": 0.5720363420014942,
728
+ "learning_rate": 4.889953392024858e-05,
729
+ "loss": 0.4502,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.48439683278993945,
734
+ "grad_norm": 0.802768212629227,
735
+ "learning_rate": 4.883480062143967e-05,
736
+ "loss": 0.4479,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.4890544946436889,
741
+ "grad_norm": 0.9089354308220536,
742
+ "learning_rate": 4.877006732263076e-05,
743
+ "loss": 0.4562,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.49371215649743827,
748
+ "grad_norm": 0.9062598882129868,
749
+ "learning_rate": 4.8705334023821855e-05,
750
+ "loss": 0.4433,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.4983698183511877,
755
+ "grad_norm": 1.0614931500809168,
756
+ "learning_rate": 4.864060072501295e-05,
757
+ "loss": 0.4509,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.5030274802049371,
762
+ "grad_norm": 0.6656921373680668,
763
+ "learning_rate": 4.857586742620404e-05,
764
+ "loss": 0.4526,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.5076851420586865,
769
+ "grad_norm": 0.761135804704884,
770
+ "learning_rate": 4.8511134127395134e-05,
771
+ "loss": 0.4428,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.5123428039124359,
776
+ "grad_norm": 0.7524291911003331,
777
+ "learning_rate": 4.844640082858623e-05,
778
+ "loss": 0.4559,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.5170004657661854,
783
+ "grad_norm": 0.7643694469846594,
784
+ "learning_rate": 4.838166752977732e-05,
785
+ "loss": 0.4441,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.5216581276199348,
790
+ "grad_norm": 0.6727074125902812,
791
+ "learning_rate": 4.831693423096841e-05,
792
+ "loss": 0.4482,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.5263157894736842,
797
+ "grad_norm": 0.6080795466448415,
798
+ "learning_rate": 4.82522009321595e-05,
799
+ "loss": 0.4464,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.5309734513274337,
804
+ "grad_norm": 0.7154575256811082,
805
+ "learning_rate": 4.81874676333506e-05,
806
+ "loss": 0.4456,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.5356311131811831,
811
+ "grad_norm": 0.5881145419877987,
812
+ "learning_rate": 4.812273433454169e-05,
813
+ "loss": 0.4429,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.5402887750349324,
818
+ "grad_norm": 0.5629504481988451,
819
+ "learning_rate": 4.8058001035732785e-05,
820
+ "loss": 0.4428,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.5449464368886818,
825
+ "grad_norm": 0.6740507784348432,
826
+ "learning_rate": 4.799326773692387e-05,
827
+ "loss": 0.4389,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.5496040987424313,
832
+ "grad_norm": 0.5590413217515213,
833
+ "learning_rate": 4.792853443811497e-05,
834
+ "loss": 0.4543,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.5542617605961807,
839
+ "grad_norm": 0.648175325079465,
840
+ "learning_rate": 4.7863801139306064e-05,
841
+ "loss": 0.4446,
842
+ "step": 595
843
+ },
844
+ {
845
+ "epoch": 0.5589194224499301,
846
+ "grad_norm": 0.6553497135224098,
847
+ "learning_rate": 4.779906784049715e-05,
848
+ "loss": 0.4501,
849
+ "step": 600
850
+ },
851
+ {
852
+ "epoch": 0.5635770843036796,
853
+ "grad_norm": 0.6606737255970081,
854
+ "learning_rate": 4.773433454168825e-05,
855
+ "loss": 0.4256,
856
+ "step": 605
857
+ },
858
+ {
859
+ "epoch": 0.568234746157429,
860
+ "grad_norm": 0.7570935534531892,
861
+ "learning_rate": 4.766960124287934e-05,
862
+ "loss": 0.4434,
863
+ "step": 610
864
+ },
865
+ {
866
+ "epoch": 0.5728924080111784,
867
+ "grad_norm": 0.6404868107239774,
868
+ "learning_rate": 4.760486794407043e-05,
869
+ "loss": 0.4368,
870
+ "step": 615
871
+ },
872
+ {
873
+ "epoch": 0.5775500698649279,
874
+ "grad_norm": 0.6133747116202044,
875
+ "learning_rate": 4.754013464526152e-05,
876
+ "loss": 0.4389,
877
+ "step": 620
878
+ },
879
+ {
880
+ "epoch": 0.5822077317186772,
881
+ "grad_norm": 1.0158420393440462,
882
+ "learning_rate": 4.747540134645262e-05,
883
+ "loss": 0.4492,
884
+ "step": 625
885
+ },
886
+ {
887
+ "epoch": 0.5868653935724266,
888
+ "grad_norm": 0.6424938062971148,
889
+ "learning_rate": 4.741066804764371e-05,
890
+ "loss": 0.4364,
891
+ "step": 630
892
+ },
893
+ {
894
+ "epoch": 0.5915230554261761,
895
+ "grad_norm": 0.5587540204090086,
896
+ "learning_rate": 4.73459347488348e-05,
897
+ "loss": 0.4353,
898
+ "step": 635
899
+ },
900
+ {
901
+ "epoch": 0.5961807172799255,
902
+ "grad_norm": 0.710771955315232,
903
+ "learning_rate": 4.7281201450025894e-05,
904
+ "loss": 0.4401,
905
+ "step": 640
906
+ },
907
+ {
908
+ "epoch": 0.6008383791336749,
909
+ "grad_norm": 0.8503719196899987,
910
+ "learning_rate": 4.721646815121699e-05,
911
+ "loss": 0.4401,
912
+ "step": 645
913
+ },
914
+ {
915
+ "epoch": 0.6054960409874243,
916
+ "grad_norm": 0.6213357524921049,
917
+ "learning_rate": 4.715173485240808e-05,
918
+ "loss": 0.4377,
919
+ "step": 650
920
+ },
921
+ {
922
+ "epoch": 0.6101537028411738,
923
+ "grad_norm": 0.728615015594888,
924
+ "learning_rate": 4.708700155359917e-05,
925
+ "loss": 0.4435,
926
+ "step": 655
927
+ },
928
+ {
929
+ "epoch": 0.6148113646949231,
930
+ "grad_norm": 0.69572702326182,
931
+ "learning_rate": 4.7022268254790266e-05,
932
+ "loss": 0.4438,
933
+ "step": 660
934
+ },
935
+ {
936
+ "epoch": 0.6194690265486725,
937
+ "grad_norm": 0.717769460394585,
938
+ "learning_rate": 4.695753495598136e-05,
939
+ "loss": 0.4382,
940
+ "step": 665
941
+ },
942
+ {
943
+ "epoch": 0.624126688402422,
944
+ "grad_norm": 0.6390733598139207,
945
+ "learning_rate": 4.689280165717245e-05,
946
+ "loss": 0.4419,
947
+ "step": 670
948
+ },
949
+ {
950
+ "epoch": 0.6287843502561714,
951
+ "grad_norm": 0.8175947498621025,
952
+ "learning_rate": 4.6828068358363545e-05,
953
+ "loss": 0.4338,
954
+ "step": 675
955
+ },
956
+ {
957
+ "epoch": 0.6334420121099208,
958
+ "grad_norm": 0.6392191276829822,
959
+ "learning_rate": 4.676333505955464e-05,
960
+ "loss": 0.437,
961
+ "step": 680
962
+ },
963
+ {
964
+ "epoch": 0.6380996739636703,
965
+ "grad_norm": 0.5385507245755475,
966
+ "learning_rate": 4.669860176074573e-05,
967
+ "loss": 0.448,
968
+ "step": 685
969
+ },
970
+ {
971
+ "epoch": 0.6427573358174197,
972
+ "grad_norm": 0.779484565903713,
973
+ "learning_rate": 4.6633868461936824e-05,
974
+ "loss": 0.4388,
975
+ "step": 690
976
+ },
977
+ {
978
+ "epoch": 0.6474149976711691,
979
+ "grad_norm": 0.609631979942144,
980
+ "learning_rate": 4.656913516312791e-05,
981
+ "loss": 0.4371,
982
+ "step": 695
983
+ },
984
+ {
985
+ "epoch": 0.6520726595249184,
986
+ "grad_norm": 0.6612175365081071,
987
+ "learning_rate": 4.650440186431901e-05,
988
+ "loss": 0.4346,
989
+ "step": 700
990
+ },
991
+ {
992
+ "epoch": 0.6567303213786679,
993
+ "grad_norm": 0.5776526816400351,
994
+ "learning_rate": 4.64396685655101e-05,
995
+ "loss": 0.4325,
996
+ "step": 705
997
+ },
998
+ {
999
+ "epoch": 0.6613879832324173,
1000
+ "grad_norm": 0.6777612372991866,
1001
+ "learning_rate": 4.637493526670119e-05,
1002
+ "loss": 0.4433,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "epoch": 0.6660456450861667,
1007
+ "grad_norm": 0.652431971316431,
1008
+ "learning_rate": 4.631020196789229e-05,
1009
+ "loss": 0.4383,
1010
+ "step": 715
1011
+ },
1012
+ {
1013
+ "epoch": 0.6707033069399162,
1014
+ "grad_norm": 0.8345742527824963,
1015
+ "learning_rate": 4.624546866908338e-05,
1016
+ "loss": 0.4297,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "epoch": 0.6753609687936656,
1021
+ "grad_norm": 0.5978893188286112,
1022
+ "learning_rate": 4.618073537027447e-05,
1023
+ "loss": 0.4353,
1024
+ "step": 725
1025
+ },
1026
+ {
1027
+ "epoch": 0.680018630647415,
1028
+ "grad_norm": 0.8328268112464421,
1029
+ "learning_rate": 4.611600207146556e-05,
1030
+ "loss": 0.4421,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "epoch": 0.6846762925011645,
1035
+ "grad_norm": 0.7087213010225971,
1036
+ "learning_rate": 4.605126877265666e-05,
1037
+ "loss": 0.4304,
1038
+ "step": 735
1039
+ },
1040
+ {
1041
+ "epoch": 0.6893339543549138,
1042
+ "grad_norm": 0.6869314447013355,
1043
+ "learning_rate": 4.598653547384775e-05,
1044
+ "loss": 0.4347,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "epoch": 0.6939916162086632,
1049
+ "grad_norm": 0.6167757431721599,
1050
+ "learning_rate": 4.592180217503884e-05,
1051
+ "loss": 0.4312,
1052
+ "step": 745
1053
+ },
1054
+ {
1055
+ "epoch": 0.6986492780624126,
1056
+ "grad_norm": 0.7676543887073451,
1057
+ "learning_rate": 4.585706887622993e-05,
1058
+ "loss": 0.4393,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 0.7033069399161621,
1063
+ "grad_norm": 0.6961688773290436,
1064
+ "learning_rate": 4.5792335577421026e-05,
1065
+ "loss": 0.4295,
1066
+ "step": 755
1067
+ },
1068
+ {
1069
+ "epoch": 0.7079646017699115,
1070
+ "grad_norm": 0.5967737066278368,
1071
+ "learning_rate": 4.572760227861212e-05,
1072
+ "loss": 0.4317,
1073
+ "step": 760
1074
+ },
1075
+ {
1076
+ "epoch": 0.7126222636236609,
1077
+ "grad_norm": 0.5577548927242444,
1078
+ "learning_rate": 4.566286897980321e-05,
1079
+ "loss": 0.4388,
1080
+ "step": 765
1081
+ },
1082
+ {
1083
+ "epoch": 0.7172799254774104,
1084
+ "grad_norm": 0.6798109409577441,
1085
+ "learning_rate": 4.5598135680994305e-05,
1086
+ "loss": 0.438,
1087
+ "step": 770
1088
+ },
1089
+ {
1090
+ "epoch": 0.7219375873311598,
1091
+ "grad_norm": 0.7079083857791663,
1092
+ "learning_rate": 4.55334023821854e-05,
1093
+ "loss": 0.4266,
1094
+ "step": 775
1095
+ },
1096
+ {
1097
+ "epoch": 0.7265952491849091,
1098
+ "grad_norm": 0.8509226139438899,
1099
+ "learning_rate": 4.546866908337649e-05,
1100
+ "loss": 0.4427,
1101
+ "step": 780
1102
+ },
1103
+ {
1104
+ "epoch": 0.7312529110386586,
1105
+ "grad_norm": 0.7242979399552838,
1106
+ "learning_rate": 4.5403935784567584e-05,
1107
+ "loss": 0.4362,
1108
+ "step": 785
1109
+ },
1110
+ {
1111
+ "epoch": 0.735910572892408,
1112
+ "grad_norm": 0.5877311409433356,
1113
+ "learning_rate": 4.533920248575868e-05,
1114
+ "loss": 0.4284,
1115
+ "step": 790
1116
+ },
1117
+ {
1118
+ "epoch": 0.7405682347461574,
1119
+ "grad_norm": 0.6078912772108137,
1120
+ "learning_rate": 4.527446918694977e-05,
1121
+ "loss": 0.4347,
1122
+ "step": 795
1123
+ },
1124
+ {
1125
+ "epoch": 0.7452258965999069,
1126
+ "grad_norm": 0.5476766413302819,
1127
+ "learning_rate": 4.520973588814086e-05,
1128
+ "loss": 0.4308,
1129
+ "step": 800
1130
+ },
1131
+ {
1132
+ "epoch": 0.7498835584536563,
1133
+ "grad_norm": 0.5195378720227425,
1134
+ "learning_rate": 4.5145002589331956e-05,
1135
+ "loss": 0.4453,
1136
+ "step": 805
1137
+ },
1138
+ {
1139
+ "epoch": 0.7545412203074057,
1140
+ "grad_norm": 0.7360682617560098,
1141
+ "learning_rate": 4.508026929052305e-05,
1142
+ "loss": 0.431,
1143
+ "step": 810
1144
+ },
1145
+ {
1146
+ "epoch": 0.759198882161155,
1147
+ "grad_norm": 0.5685816437073101,
1148
+ "learning_rate": 4.501553599171414e-05,
1149
+ "loss": 0.4342,
1150
+ "step": 815
1151
+ },
1152
+ {
1153
+ "epoch": 0.7638565440149045,
1154
+ "grad_norm": 0.5972759336495264,
1155
+ "learning_rate": 4.495080269290523e-05,
1156
+ "loss": 0.4336,
1157
+ "step": 820
1158
+ },
1159
+ {
1160
+ "epoch": 0.7685142058686539,
1161
+ "grad_norm": 0.6728421551142247,
1162
+ "learning_rate": 4.488606939409633e-05,
1163
+ "loss": 0.4226,
1164
+ "step": 825
1165
+ },
1166
+ {
1167
+ "epoch": 0.7731718677224033,
1168
+ "grad_norm": 0.5582332660093027,
1169
+ "learning_rate": 4.482133609528742e-05,
1170
+ "loss": 0.4302,
1171
+ "step": 830
1172
+ },
1173
+ {
1174
+ "epoch": 0.7778295295761528,
1175
+ "grad_norm": 0.6980425901666201,
1176
+ "learning_rate": 4.475660279647851e-05,
1177
+ "loss": 0.4372,
1178
+ "step": 835
1179
+ },
1180
+ {
1181
+ "epoch": 0.7824871914299022,
1182
+ "grad_norm": 0.7390227270424299,
1183
+ "learning_rate": 4.46918694976696e-05,
1184
+ "loss": 0.4232,
1185
+ "step": 840
1186
+ },
1187
+ {
1188
+ "epoch": 0.7871448532836516,
1189
+ "grad_norm": 0.6485234571078656,
1190
+ "learning_rate": 4.46271361988607e-05,
1191
+ "loss": 0.4284,
1192
+ "step": 845
1193
+ },
1194
+ {
1195
+ "epoch": 0.7918025151374011,
1196
+ "grad_norm": 0.6336992788450944,
1197
+ "learning_rate": 4.4562402900051786e-05,
1198
+ "loss": 0.4307,
1199
+ "step": 850
1200
+ },
1201
+ {
1202
+ "epoch": 0.7964601769911505,
1203
+ "grad_norm": 0.7410255325128174,
1204
+ "learning_rate": 4.449766960124288e-05,
1205
+ "loss": 0.4236,
1206
+ "step": 855
1207
+ },
1208
+ {
1209
+ "epoch": 0.8011178388448998,
1210
+ "grad_norm": 0.5276824982854947,
1211
+ "learning_rate": 4.443293630243397e-05,
1212
+ "loss": 0.4252,
1213
+ "step": 860
1214
+ },
1215
+ {
1216
+ "epoch": 0.8057755006986492,
1217
+ "grad_norm": 0.5896389602903055,
1218
+ "learning_rate": 4.436820300362507e-05,
1219
+ "loss": 0.4284,
1220
+ "step": 865
1221
+ },
1222
+ {
1223
+ "epoch": 0.8104331625523987,
1224
+ "grad_norm": 0.5253923050441579,
1225
+ "learning_rate": 4.430346970481616e-05,
1226
+ "loss": 0.4227,
1227
+ "step": 870
1228
+ },
1229
+ {
1230
+ "epoch": 0.8150908244061481,
1231
+ "grad_norm": 0.5344210226388759,
1232
+ "learning_rate": 4.423873640600725e-05,
1233
+ "loss": 0.4321,
1234
+ "step": 875
1235
+ },
1236
+ {
1237
+ "epoch": 0.8197484862598975,
1238
+ "grad_norm": 0.5189955942586891,
1239
+ "learning_rate": 4.4174003107198344e-05,
1240
+ "loss": 0.4164,
1241
+ "step": 880
1242
+ },
1243
+ {
1244
+ "epoch": 0.824406148113647,
1245
+ "grad_norm": 0.505727185520852,
1246
+ "learning_rate": 4.410926980838944e-05,
1247
+ "loss": 0.4311,
1248
+ "step": 885
1249
+ },
1250
+ {
1251
+ "epoch": 0.8290638099673964,
1252
+ "grad_norm": 0.6952374910519269,
1253
+ "learning_rate": 4.404453650958053e-05,
1254
+ "loss": 0.4298,
1255
+ "step": 890
1256
+ },
1257
+ {
1258
+ "epoch": 0.8337214718211458,
1259
+ "grad_norm": 0.6334651402321975,
1260
+ "learning_rate": 4.397980321077162e-05,
1261
+ "loss": 0.4302,
1262
+ "step": 895
1263
+ },
1264
+ {
1265
+ "epoch": 0.8383791336748952,
1266
+ "grad_norm": 0.5871993814882748,
1267
+ "learning_rate": 4.3915069911962716e-05,
1268
+ "loss": 0.4243,
1269
+ "step": 900
1270
+ },
1271
+ {
1272
+ "epoch": 0.8430367955286446,
1273
+ "grad_norm": 0.562675211982263,
1274
+ "learning_rate": 4.385033661315381e-05,
1275
+ "loss": 0.4282,
1276
+ "step": 905
1277
+ },
1278
+ {
1279
+ "epoch": 0.847694457382394,
1280
+ "grad_norm": 0.55189342404869,
1281
+ "learning_rate": 4.37856033143449e-05,
1282
+ "loss": 0.4342,
1283
+ "step": 910
1284
+ },
1285
+ {
1286
+ "epoch": 0.8523521192361434,
1287
+ "grad_norm": 0.7717927793072482,
1288
+ "learning_rate": 4.3720870015535995e-05,
1289
+ "loss": 0.4262,
1290
+ "step": 915
1291
+ },
1292
+ {
1293
+ "epoch": 0.8570097810898929,
1294
+ "grad_norm": 0.545706766656389,
1295
+ "learning_rate": 4.365613671672709e-05,
1296
+ "loss": 0.4334,
1297
+ "step": 920
1298
+ },
1299
+ {
1300
+ "epoch": 0.8616674429436423,
1301
+ "grad_norm": 0.7308396494889845,
1302
+ "learning_rate": 4.359140341791818e-05,
1303
+ "loss": 0.4276,
1304
+ "step": 925
1305
+ },
1306
+ {
1307
+ "epoch": 0.8663251047973917,
1308
+ "grad_norm": 0.6334665220388306,
1309
+ "learning_rate": 4.352667011910927e-05,
1310
+ "loss": 0.4289,
1311
+ "step": 930
1312
+ },
1313
+ {
1314
+ "epoch": 0.8709827666511412,
1315
+ "grad_norm": 0.5789727565447382,
1316
+ "learning_rate": 4.346193682030037e-05,
1317
+ "loss": 0.4177,
1318
+ "step": 935
1319
+ },
1320
+ {
1321
+ "epoch": 0.8756404285048905,
1322
+ "grad_norm": 0.6071364036108049,
1323
+ "learning_rate": 4.339720352149146e-05,
1324
+ "loss": 0.4187,
1325
+ "step": 940
1326
+ },
1327
+ {
1328
+ "epoch": 0.8802980903586399,
1329
+ "grad_norm": 0.48355618067734446,
1330
+ "learning_rate": 4.3332470222682546e-05,
1331
+ "loss": 0.4222,
1332
+ "step": 945
1333
+ },
1334
+ {
1335
+ "epoch": 0.8849557522123894,
1336
+ "grad_norm": 0.757016952941287,
1337
+ "learning_rate": 4.326773692387364e-05,
1338
+ "loss": 0.4149,
1339
+ "step": 950
1340
+ },
1341
+ {
1342
+ "epoch": 0.8896134140661388,
1343
+ "grad_norm": 0.5970956354199685,
1344
+ "learning_rate": 4.320300362506474e-05,
1345
+ "loss": 0.4285,
1346
+ "step": 955
1347
+ },
1348
+ {
1349
+ "epoch": 0.8942710759198882,
1350
+ "grad_norm": 1.7486796656102368,
1351
+ "learning_rate": 4.313827032625583e-05,
1352
+ "loss": 0.4328,
1353
+ "step": 960
1354
+ },
1355
+ {
1356
+ "epoch": 0.8989287377736377,
1357
+ "grad_norm": 0.676896991938164,
1358
+ "learning_rate": 4.307353702744692e-05,
1359
+ "loss": 0.4278,
1360
+ "step": 965
1361
+ },
1362
+ {
1363
+ "epoch": 0.9035863996273871,
1364
+ "grad_norm": 0.5343157092353157,
1365
+ "learning_rate": 4.300880372863801e-05,
1366
+ "loss": 0.4298,
1367
+ "step": 970
1368
+ },
1369
+ {
1370
+ "epoch": 0.9082440614811365,
1371
+ "grad_norm": 0.6312289170160827,
1372
+ "learning_rate": 4.294407042982911e-05,
1373
+ "loss": 0.4237,
1374
+ "step": 975
1375
+ },
1376
+ {
1377
+ "epoch": 0.9129017233348858,
1378
+ "grad_norm": 0.7628441977751337,
1379
+ "learning_rate": 4.28793371310202e-05,
1380
+ "loss": 0.4266,
1381
+ "step": 980
1382
+ },
1383
+ {
1384
+ "epoch": 0.9175593851886353,
1385
+ "grad_norm": 1.0298339126452174,
1386
+ "learning_rate": 4.281460383221129e-05,
1387
+ "loss": 0.4308,
1388
+ "step": 985
1389
+ },
1390
+ {
1391
+ "epoch": 0.9222170470423847,
1392
+ "grad_norm": 0.7772941072113776,
1393
+ "learning_rate": 4.274987053340238e-05,
1394
+ "loss": 0.4042,
1395
+ "step": 990
1396
+ },
1397
+ {
1398
+ "epoch": 0.9268747088961341,
1399
+ "grad_norm": 0.8073817232990661,
1400
+ "learning_rate": 4.2685137234593476e-05,
1401
+ "loss": 0.4195,
1402
+ "step": 995
1403
+ },
1404
+ {
1405
+ "epoch": 0.9315323707498836,
1406
+ "grad_norm": 0.7213209273575877,
1407
+ "learning_rate": 4.262040393578457e-05,
1408
+ "loss": 0.4224,
1409
+ "step": 1000
1410
+ },
1411
+ {
1412
+ "epoch": 0.936190032603633,
1413
+ "grad_norm": 0.7416359254585871,
1414
+ "learning_rate": 4.255567063697566e-05,
1415
+ "loss": 0.4312,
1416
+ "step": 1005
1417
+ },
1418
+ {
1419
+ "epoch": 0.9408476944573824,
1420
+ "grad_norm": 0.527102694728885,
1421
+ "learning_rate": 4.2490937338166755e-05,
1422
+ "loss": 0.4201,
1423
+ "step": 1010
1424
+ },
1425
+ {
1426
+ "epoch": 0.9455053563111319,
1427
+ "grad_norm": 0.5594511470545082,
1428
+ "learning_rate": 4.242620403935785e-05,
1429
+ "loss": 0.4224,
1430
+ "step": 1015
1431
+ },
1432
+ {
1433
+ "epoch": 0.9501630181648812,
1434
+ "grad_norm": 0.5965418648993862,
1435
+ "learning_rate": 4.236147074054894e-05,
1436
+ "loss": 0.4309,
1437
+ "step": 1020
1438
+ },
1439
+ {
1440
+ "epoch": 0.9548206800186306,
1441
+ "grad_norm": 0.5450943367909993,
1442
+ "learning_rate": 4.2296737441740034e-05,
1443
+ "loss": 0.4227,
1444
+ "step": 1025
1445
+ },
1446
+ {
1447
+ "epoch": 0.95947834187238,
1448
+ "grad_norm": 0.7935428149469217,
1449
+ "learning_rate": 4.223200414293113e-05,
1450
+ "loss": 0.422,
1451
+ "step": 1030
1452
+ },
1453
+ {
1454
+ "epoch": 0.9641360037261295,
1455
+ "grad_norm": 0.48700743765986526,
1456
+ "learning_rate": 4.216727084412222e-05,
1457
+ "loss": 0.4186,
1458
+ "step": 1035
1459
+ },
1460
+ {
1461
+ "epoch": 0.9687936655798789,
1462
+ "grad_norm": 0.7728666319795747,
1463
+ "learning_rate": 4.2102537545313306e-05,
1464
+ "loss": 0.4177,
1465
+ "step": 1040
1466
+ },
1467
+ {
1468
+ "epoch": 0.9734513274336283,
1469
+ "grad_norm": 0.6153911472582105,
1470
+ "learning_rate": 4.2037804246504406e-05,
1471
+ "loss": 0.4185,
1472
+ "step": 1045
1473
+ },
1474
+ {
1475
+ "epoch": 0.9781089892873778,
1476
+ "grad_norm": 0.4852026029806901,
1477
+ "learning_rate": 4.19730709476955e-05,
1478
+ "loss": 0.4185,
1479
+ "step": 1050
1480
+ },
1481
+ {
1482
+ "epoch": 0.9827666511411272,
1483
+ "grad_norm": 0.4462069599855887,
1484
+ "learning_rate": 4.190833764888659e-05,
1485
+ "loss": 0.4193,
1486
+ "step": 1055
1487
+ },
1488
+ {
1489
+ "epoch": 0.9874243129948765,
1490
+ "grad_norm": 0.5229879709804952,
1491
+ "learning_rate": 4.184360435007768e-05,
1492
+ "loss": 0.4221,
1493
+ "step": 1060
1494
+ },
1495
+ {
1496
+ "epoch": 0.992081974848626,
1497
+ "grad_norm": 0.9581807172329343,
1498
+ "learning_rate": 4.177887105126878e-05,
1499
+ "loss": 0.4193,
1500
+ "step": 1065
1501
+ },
1502
+ {
1503
+ "epoch": 0.9967396367023754,
1504
+ "grad_norm": 0.6118951656784746,
1505
+ "learning_rate": 4.171413775245987e-05,
1506
+ "loss": 0.411,
1507
+ "step": 1070
1508
+ },
1509
+ {
1510
+ "epoch": 1.00093153237075,
1511
+ "grad_norm": 1.198232600503455,
1512
+ "learning_rate": 4.164940445365096e-05,
1513
+ "loss": 0.4222,
1514
+ "step": 1075
1515
+ },
1516
+ {
1517
+ "epoch": 1.0055891942244992,
1518
+ "grad_norm": 0.6626140255094659,
1519
+ "learning_rate": 4.158467115484205e-05,
1520
+ "loss": 0.3643,
1521
+ "step": 1080
1522
+ },
1523
+ {
1524
+ "epoch": 1.0102468560782487,
1525
+ "grad_norm": 0.6595075009077368,
1526
+ "learning_rate": 4.151993785603315e-05,
1527
+ "loss": 0.3533,
1528
+ "step": 1085
1529
+ },
1530
+ {
1531
+ "epoch": 1.0149045179319982,
1532
+ "grad_norm": 0.6711382033612453,
1533
+ "learning_rate": 4.1455204557224236e-05,
1534
+ "loss": 0.3654,
1535
+ "step": 1090
1536
+ },
1537
+ {
1538
+ "epoch": 1.0195621797857475,
1539
+ "grad_norm": 0.6426521900436137,
1540
+ "learning_rate": 4.139047125841533e-05,
1541
+ "loss": 0.3632,
1542
+ "step": 1095
1543
+ },
1544
+ {
1545
+ "epoch": 1.024219841639497,
1546
+ "grad_norm": 0.5339378895704875,
1547
+ "learning_rate": 4.132573795960642e-05,
1548
+ "loss": 0.3656,
1549
+ "step": 1100
1550
+ },
1551
+ {
1552
+ "epoch": 1.0288775034932465,
1553
+ "grad_norm": 0.5493484057627164,
1554
+ "learning_rate": 4.1261004660797515e-05,
1555
+ "loss": 0.3663,
1556
+ "step": 1105
1557
+ },
1558
+ {
1559
+ "epoch": 1.0335351653469957,
1560
+ "grad_norm": 0.5273400302285899,
1561
+ "learning_rate": 4.119627136198861e-05,
1562
+ "loss": 0.3653,
1563
+ "step": 1110
1564
+ },
1565
+ {
1566
+ "epoch": 1.0381928272007452,
1567
+ "grad_norm": 0.48412616047354784,
1568
+ "learning_rate": 4.11315380631797e-05,
1569
+ "loss": 0.3541,
1570
+ "step": 1115
1571
+ },
1572
+ {
1573
+ "epoch": 1.0428504890544947,
1574
+ "grad_norm": 0.6089370186461038,
1575
+ "learning_rate": 4.1066804764370794e-05,
1576
+ "loss": 0.3635,
1577
+ "step": 1120
1578
+ },
1579
+ {
1580
+ "epoch": 1.047508150908244,
1581
+ "grad_norm": 0.6152489330197201,
1582
+ "learning_rate": 4.100207146556189e-05,
1583
+ "loss": 0.3692,
1584
+ "step": 1125
1585
+ },
1586
+ {
1587
+ "epoch": 1.0521658127619935,
1588
+ "grad_norm": 0.4903458431092099,
1589
+ "learning_rate": 4.093733816675298e-05,
1590
+ "loss": 0.3528,
1591
+ "step": 1130
1592
+ },
1593
+ {
1594
+ "epoch": 1.056823474615743,
1595
+ "grad_norm": 0.45218893931929327,
1596
+ "learning_rate": 4.087260486794407e-05,
1597
+ "loss": 0.3641,
1598
+ "step": 1135
1599
+ },
1600
+ {
1601
+ "epoch": 1.0614811364694923,
1602
+ "grad_norm": 0.5634215362291429,
1603
+ "learning_rate": 4.0807871569135166e-05,
1604
+ "loss": 0.3633,
1605
+ "step": 1140
1606
+ },
1607
+ {
1608
+ "epoch": 1.0661387983232418,
1609
+ "grad_norm": 0.44840145346738985,
1610
+ "learning_rate": 4.074313827032626e-05,
1611
+ "loss": 0.3634,
1612
+ "step": 1145
1613
+ },
1614
+ {
1615
+ "epoch": 1.0707964601769913,
1616
+ "grad_norm": 0.47176553149630446,
1617
+ "learning_rate": 4.067840497151735e-05,
1618
+ "loss": 0.3586,
1619
+ "step": 1150
1620
+ },
1621
+ {
1622
+ "epoch": 1.0754541220307405,
1623
+ "grad_norm": 0.5804511973024695,
1624
+ "learning_rate": 4.0613671672708445e-05,
1625
+ "loss": 0.3622,
1626
+ "step": 1155
1627
+ },
1628
+ {
1629
+ "epoch": 1.08011178388449,
1630
+ "grad_norm": 0.5594430865141662,
1631
+ "learning_rate": 4.054893837389954e-05,
1632
+ "loss": 0.3699,
1633
+ "step": 1160
1634
+ },
1635
+ {
1636
+ "epoch": 1.0847694457382393,
1637
+ "grad_norm": 0.4058236118445243,
1638
+ "learning_rate": 4.048420507509063e-05,
1639
+ "loss": 0.3705,
1640
+ "step": 1165
1641
+ },
1642
+ {
1643
+ "epoch": 1.0894271075919888,
1644
+ "grad_norm": 0.5048270986690303,
1645
+ "learning_rate": 4.041947177628172e-05,
1646
+ "loss": 0.3675,
1647
+ "step": 1170
1648
+ },
1649
+ {
1650
+ "epoch": 1.0940847694457383,
1651
+ "grad_norm": 0.5363220404825172,
1652
+ "learning_rate": 4.035473847747282e-05,
1653
+ "loss": 0.3684,
1654
+ "step": 1175
1655
+ },
1656
+ {
1657
+ "epoch": 1.0987424312994876,
1658
+ "grad_norm": 0.5199102851213286,
1659
+ "learning_rate": 4.029000517866391e-05,
1660
+ "loss": 0.36,
1661
+ "step": 1180
1662
+ },
1663
+ {
1664
+ "epoch": 1.103400093153237,
1665
+ "grad_norm": 0.5335401206236534,
1666
+ "learning_rate": 4.0225271879854996e-05,
1667
+ "loss": 0.3611,
1668
+ "step": 1185
1669
+ },
1670
+ {
1671
+ "epoch": 1.1080577550069866,
1672
+ "grad_norm": 0.3877188665567559,
1673
+ "learning_rate": 4.016053858104609e-05,
1674
+ "loss": 0.3428,
1675
+ "step": 1190
1676
+ },
1677
+ {
1678
+ "epoch": 1.1127154168607358,
1679
+ "grad_norm": 0.47198305564893206,
1680
+ "learning_rate": 4.009580528223719e-05,
1681
+ "loss": 0.3521,
1682
+ "step": 1195
1683
+ },
1684
+ {
1685
+ "epoch": 1.1173730787144853,
1686
+ "grad_norm": 0.4375832663471869,
1687
+ "learning_rate": 4.0031071983428275e-05,
1688
+ "loss": 0.36,
1689
+ "step": 1200
1690
+ },
1691
+ {
1692
+ "epoch": 1.1220307405682348,
1693
+ "grad_norm": 0.5734782102745869,
1694
+ "learning_rate": 3.996633868461937e-05,
1695
+ "loss": 0.3692,
1696
+ "step": 1205
1697
+ },
1698
+ {
1699
+ "epoch": 1.126688402421984,
1700
+ "grad_norm": 0.466632874743288,
1701
+ "learning_rate": 3.990160538581046e-05,
1702
+ "loss": 0.3629,
1703
+ "step": 1210
1704
+ },
1705
+ {
1706
+ "epoch": 1.1313460642757336,
1707
+ "grad_norm": 0.6219265879975726,
1708
+ "learning_rate": 3.9836872087001554e-05,
1709
+ "loss": 0.3595,
1710
+ "step": 1215
1711
+ },
1712
+ {
1713
+ "epoch": 1.136003726129483,
1714
+ "grad_norm": 0.6585230588680556,
1715
+ "learning_rate": 3.977213878819265e-05,
1716
+ "loss": 0.3759,
1717
+ "step": 1220
1718
+ },
1719
+ {
1720
+ "epoch": 1.1406613879832324,
1721
+ "grad_norm": 0.625960144911052,
1722
+ "learning_rate": 3.970740548938374e-05,
1723
+ "loss": 0.3608,
1724
+ "step": 1225
1725
+ },
1726
+ {
1727
+ "epoch": 1.1453190498369819,
1728
+ "grad_norm": 0.5613416054644293,
1729
+ "learning_rate": 3.964267219057483e-05,
1730
+ "loss": 0.3591,
1731
+ "step": 1230
1732
+ },
1733
+ {
1734
+ "epoch": 1.1499767116907313,
1735
+ "grad_norm": 0.6293922717444177,
1736
+ "learning_rate": 3.9577938891765926e-05,
1737
+ "loss": 0.3633,
1738
+ "step": 1235
1739
+ },
1740
+ {
1741
+ "epoch": 1.1546343735444806,
1742
+ "grad_norm": 0.4382344516265855,
1743
+ "learning_rate": 3.951320559295702e-05,
1744
+ "loss": 0.3673,
1745
+ "step": 1240
1746
+ },
1747
+ {
1748
+ "epoch": 1.1592920353982301,
1749
+ "grad_norm": 0.43635813377518307,
1750
+ "learning_rate": 3.944847229414811e-05,
1751
+ "loss": 0.3694,
1752
+ "step": 1245
1753
+ },
1754
+ {
1755
+ "epoch": 1.1639496972519794,
1756
+ "grad_norm": 0.6486802446293214,
1757
+ "learning_rate": 3.9383738995339205e-05,
1758
+ "loss": 0.3721,
1759
+ "step": 1250
1760
+ },
1761
+ {
1762
+ "epoch": 1.1686073591057289,
1763
+ "grad_norm": 0.5468009019040315,
1764
+ "learning_rate": 3.93190056965303e-05,
1765
+ "loss": 0.3594,
1766
+ "step": 1255
1767
+ },
1768
+ {
1769
+ "epoch": 1.1732650209594784,
1770
+ "grad_norm": 0.4992784524933434,
1771
+ "learning_rate": 3.925427239772139e-05,
1772
+ "loss": 0.3723,
1773
+ "step": 1260
1774
+ },
1775
+ {
1776
+ "epoch": 1.1779226828132279,
1777
+ "grad_norm": 0.48099901440871706,
1778
+ "learning_rate": 3.9189539098912484e-05,
1779
+ "loss": 0.3733,
1780
+ "step": 1265
1781
+ },
1782
+ {
1783
+ "epoch": 1.1825803446669771,
1784
+ "grad_norm": 0.5099848543509489,
1785
+ "learning_rate": 3.912480580010358e-05,
1786
+ "loss": 0.3531,
1787
+ "step": 1270
1788
+ },
1789
+ {
1790
+ "epoch": 1.1872380065207266,
1791
+ "grad_norm": 0.5202936478101648,
1792
+ "learning_rate": 3.906007250129467e-05,
1793
+ "loss": 0.3637,
1794
+ "step": 1275
1795
+ },
1796
+ {
1797
+ "epoch": 1.191895668374476,
1798
+ "grad_norm": 0.534882109326889,
1799
+ "learning_rate": 3.8995339202485756e-05,
1800
+ "loss": 0.3689,
1801
+ "step": 1280
1802
+ },
1803
+ {
1804
+ "epoch": 1.1965533302282254,
1805
+ "grad_norm": 0.5919980159275785,
1806
+ "learning_rate": 3.8930605903676856e-05,
1807
+ "loss": 0.3712,
1808
+ "step": 1285
1809
+ },
1810
+ {
1811
+ "epoch": 1.201210992081975,
1812
+ "grad_norm": 0.6393674652244553,
1813
+ "learning_rate": 3.886587260486795e-05,
1814
+ "loss": 0.3609,
1815
+ "step": 1290
1816
+ },
1817
+ {
1818
+ "epoch": 1.2058686539357242,
1819
+ "grad_norm": 0.449384764222771,
1820
+ "learning_rate": 3.8801139306059035e-05,
1821
+ "loss": 0.3633,
1822
+ "step": 1295
1823
+ },
1824
+ {
1825
+ "epoch": 1.2105263157894737,
1826
+ "grad_norm": 0.5892594923823059,
1827
+ "learning_rate": 3.873640600725013e-05,
1828
+ "loss": 0.3595,
1829
+ "step": 1300
1830
+ },
1831
+ {
1832
+ "epoch": 1.2151839776432232,
1833
+ "grad_norm": 0.5334687166327565,
1834
+ "learning_rate": 3.867167270844123e-05,
1835
+ "loss": 0.3699,
1836
+ "step": 1305
1837
+ },
1838
+ {
1839
+ "epoch": 1.2198416394969724,
1840
+ "grad_norm": 0.44268921628250013,
1841
+ "learning_rate": 3.8606939409632314e-05,
1842
+ "loss": 0.3722,
1843
+ "step": 1310
1844
+ },
1845
+ {
1846
+ "epoch": 1.224499301350722,
1847
+ "grad_norm": 0.4291582971347598,
1848
+ "learning_rate": 3.854220611082341e-05,
1849
+ "loss": 0.3619,
1850
+ "step": 1315
1851
+ },
1852
+ {
1853
+ "epoch": 1.2291569632044714,
1854
+ "grad_norm": 0.4336800197463241,
1855
+ "learning_rate": 3.84774728120145e-05,
1856
+ "loss": 0.3715,
1857
+ "step": 1320
1858
+ },
1859
+ {
1860
+ "epoch": 1.2338146250582207,
1861
+ "grad_norm": 0.4443708683400446,
1862
+ "learning_rate": 3.841273951320559e-05,
1863
+ "loss": 0.3622,
1864
+ "step": 1325
1865
+ },
1866
+ {
1867
+ "epoch": 1.2384722869119702,
1868
+ "grad_norm": 0.427129846430766,
1869
+ "learning_rate": 3.8348006214396686e-05,
1870
+ "loss": 0.3692,
1871
+ "step": 1330
1872
+ },
1873
+ {
1874
+ "epoch": 1.2431299487657197,
1875
+ "grad_norm": 0.5591150556223793,
1876
+ "learning_rate": 3.828327291558778e-05,
1877
+ "loss": 0.3622,
1878
+ "step": 1335
1879
+ },
1880
+ {
1881
+ "epoch": 1.247787610619469,
1882
+ "grad_norm": 0.5657209049937582,
1883
+ "learning_rate": 3.821853961677888e-05,
1884
+ "loss": 0.3637,
1885
+ "step": 1340
1886
+ },
1887
+ {
1888
+ "epoch": 1.2524452724732185,
1889
+ "grad_norm": 0.49877057776070494,
1890
+ "learning_rate": 3.8153806317969965e-05,
1891
+ "loss": 0.3533,
1892
+ "step": 1345
1893
+ },
1894
+ {
1895
+ "epoch": 1.257102934326968,
1896
+ "grad_norm": 0.5817369057575189,
1897
+ "learning_rate": 3.808907301916106e-05,
1898
+ "loss": 0.3633,
1899
+ "step": 1350
1900
+ },
1901
+ {
1902
+ "epoch": 1.2617605961807172,
1903
+ "grad_norm": 0.5874812736984852,
1904
+ "learning_rate": 3.802433972035215e-05,
1905
+ "loss": 0.3594,
1906
+ "step": 1355
1907
+ },
1908
+ {
1909
+ "epoch": 1.2664182580344667,
1910
+ "grad_norm": 0.6207126846666516,
1911
+ "learning_rate": 3.7959606421543244e-05,
1912
+ "loss": 0.3528,
1913
+ "step": 1360
1914
+ },
1915
+ {
1916
+ "epoch": 1.271075919888216,
1917
+ "grad_norm": 0.5366782936079324,
1918
+ "learning_rate": 3.789487312273434e-05,
1919
+ "loss": 0.3656,
1920
+ "step": 1365
1921
+ },
1922
+ {
1923
+ "epoch": 1.2757335817419655,
1924
+ "grad_norm": 0.5830667256592843,
1925
+ "learning_rate": 3.783013982392543e-05,
1926
+ "loss": 0.3634,
1927
+ "step": 1370
1928
+ },
1929
+ {
1930
+ "epoch": 1.280391243595715,
1931
+ "grad_norm": 0.535133020380144,
1932
+ "learning_rate": 3.776540652511652e-05,
1933
+ "loss": 0.3638,
1934
+ "step": 1375
1935
+ },
1936
+ {
1937
+ "epoch": 1.2850489054494645,
1938
+ "grad_norm": 0.5605033732100219,
1939
+ "learning_rate": 3.7700673226307616e-05,
1940
+ "loss": 0.3634,
1941
+ "step": 1380
1942
+ },
1943
+ {
1944
+ "epoch": 1.2897065673032138,
1945
+ "grad_norm": 0.6454282897245199,
1946
+ "learning_rate": 3.763593992749871e-05,
1947
+ "loss": 0.3617,
1948
+ "step": 1385
1949
+ },
1950
+ {
1951
+ "epoch": 1.2943642291569633,
1952
+ "grad_norm": 0.569922823326428,
1953
+ "learning_rate": 3.7571206628689795e-05,
1954
+ "loss": 0.3715,
1955
+ "step": 1390
1956
+ },
1957
+ {
1958
+ "epoch": 1.2990218910107125,
1959
+ "grad_norm": 0.7489830344450082,
1960
+ "learning_rate": 3.7506473329880895e-05,
1961
+ "loss": 0.4492,
1962
+ "step": 1395
1963
+ },
1964
+ {
1965
+ "epoch": 1.303679552864462,
1966
+ "grad_norm": 0.5804151095364183,
1967
+ "learning_rate": 3.744174003107199e-05,
1968
+ "loss": 0.3672,
1969
+ "step": 1400
1970
+ },
1971
+ {
1972
+ "epoch": 1.3083372147182115,
1973
+ "grad_norm": 0.45978003988666893,
1974
+ "learning_rate": 3.7377006732263074e-05,
1975
+ "loss": 0.3602,
1976
+ "step": 1405
1977
+ },
1978
+ {
1979
+ "epoch": 1.312994876571961,
1980
+ "grad_norm": 0.4805974767093187,
1981
+ "learning_rate": 3.731227343345417e-05,
1982
+ "loss": 0.3589,
1983
+ "step": 1410
1984
+ },
1985
+ {
1986
+ "epoch": 1.3176525384257103,
1987
+ "grad_norm": 0.4846107371473044,
1988
+ "learning_rate": 3.724754013464527e-05,
1989
+ "loss": 0.3775,
1990
+ "step": 1415
1991
+ },
1992
+ {
1993
+ "epoch": 1.3223102002794598,
1994
+ "grad_norm": 0.44140763746654454,
1995
+ "learning_rate": 3.718280683583635e-05,
1996
+ "loss": 0.3649,
1997
+ "step": 1420
1998
+ },
1999
+ {
2000
+ "epoch": 1.326967862133209,
2001
+ "grad_norm": 0.3981869098899127,
2002
+ "learning_rate": 3.7118073537027446e-05,
2003
+ "loss": 0.3609,
2004
+ "step": 1425
2005
+ },
2006
+ {
2007
+ "epoch": 1.3316255239869585,
2008
+ "grad_norm": 0.6646189023622765,
2009
+ "learning_rate": 3.705334023821854e-05,
2010
+ "loss": 0.361,
2011
+ "step": 1430
2012
+ },
2013
+ {
2014
+ "epoch": 1.336283185840708,
2015
+ "grad_norm": 0.5190775947864457,
2016
+ "learning_rate": 3.698860693940964e-05,
2017
+ "loss": 0.3651,
2018
+ "step": 1435
2019
+ },
2020
+ {
2021
+ "epoch": 1.3409408476944573,
2022
+ "grad_norm": 0.4665782605567536,
2023
+ "learning_rate": 3.6923873640600725e-05,
2024
+ "loss": 0.3637,
2025
+ "step": 1440
2026
+ },
2027
+ {
2028
+ "epoch": 1.3455985095482068,
2029
+ "grad_norm": 0.533120751391509,
2030
+ "learning_rate": 3.685914034179182e-05,
2031
+ "loss": 0.3705,
2032
+ "step": 1445
2033
+ },
2034
+ {
2035
+ "epoch": 1.350256171401956,
2036
+ "grad_norm": 0.4454321342916118,
2037
+ "learning_rate": 3.679440704298292e-05,
2038
+ "loss": 0.3606,
2039
+ "step": 1450
2040
+ },
2041
+ {
2042
+ "epoch": 1.3549138332557056,
2043
+ "grad_norm": 0.43930714074978666,
2044
+ "learning_rate": 3.6729673744174004e-05,
2045
+ "loss": 0.3699,
2046
+ "step": 1455
2047
+ },
2048
+ {
2049
+ "epoch": 1.359571495109455,
2050
+ "grad_norm": 0.5051073774169964,
2051
+ "learning_rate": 3.66649404453651e-05,
2052
+ "loss": 0.3542,
2053
+ "step": 1460
2054
+ },
2055
+ {
2056
+ "epoch": 1.3642291569632046,
2057
+ "grad_norm": 0.4914786128754226,
2058
+ "learning_rate": 3.660020714655619e-05,
2059
+ "loss": 0.3611,
2060
+ "step": 1465
2061
+ },
2062
+ {
2063
+ "epoch": 1.3688868188169538,
2064
+ "grad_norm": 0.48917577891457625,
2065
+ "learning_rate": 3.653547384774728e-05,
2066
+ "loss": 0.3647,
2067
+ "step": 1470
2068
+ },
2069
+ {
2070
+ "epoch": 1.3735444806707033,
2071
+ "grad_norm": 0.5218401916805995,
2072
+ "learning_rate": 3.6470740548938376e-05,
2073
+ "loss": 0.3601,
2074
+ "step": 1475
2075
+ },
2076
+ {
2077
+ "epoch": 1.3782021425244526,
2078
+ "grad_norm": 0.4542309075740912,
2079
+ "learning_rate": 3.640600725012947e-05,
2080
+ "loss": 0.3603,
2081
+ "step": 1480
2082
+ },
2083
+ {
2084
+ "epoch": 1.382859804378202,
2085
+ "grad_norm": 0.593114065460838,
2086
+ "learning_rate": 3.634127395132056e-05,
2087
+ "loss": 0.3667,
2088
+ "step": 1485
2089
+ },
2090
+ {
2091
+ "epoch": 1.3875174662319516,
2092
+ "grad_norm": 0.7061630570341471,
2093
+ "learning_rate": 3.6276540652511655e-05,
2094
+ "loss": 0.3684,
2095
+ "step": 1490
2096
+ },
2097
+ {
2098
+ "epoch": 1.392175128085701,
2099
+ "grad_norm": 1.1149409130136005,
2100
+ "learning_rate": 3.621180735370275e-05,
2101
+ "loss": 0.4374,
2102
+ "step": 1495
2103
+ },
2104
+ {
2105
+ "epoch": 1.3968327899394504,
2106
+ "grad_norm": 1.7493220952744504,
2107
+ "learning_rate": 3.6147074054893834e-05,
2108
+ "loss": 0.7659,
2109
+ "step": 1500
2110
+ },
2111
+ {
2112
+ "epoch": 1.4014904517931999,
2113
+ "grad_norm": 0.8169838033128435,
2114
+ "learning_rate": 3.6082340756084934e-05,
2115
+ "loss": 0.3708,
2116
+ "step": 1505
2117
+ },
2118
+ {
2119
+ "epoch": 1.4061481136469491,
2120
+ "grad_norm": 0.6343950966738808,
2121
+ "learning_rate": 3.601760745727603e-05,
2122
+ "loss": 0.3651,
2123
+ "step": 1510
2124
+ },
2125
+ {
2126
+ "epoch": 1.4108057755006986,
2127
+ "grad_norm": 0.722357376224152,
2128
+ "learning_rate": 3.595287415846711e-05,
2129
+ "loss": 0.3735,
2130
+ "step": 1515
2131
+ },
2132
+ {
2133
+ "epoch": 1.4154634373544481,
2134
+ "grad_norm": 0.5665404433376358,
2135
+ "learning_rate": 3.5888140859658206e-05,
2136
+ "loss": 0.3658,
2137
+ "step": 1520
2138
+ },
2139
+ {
2140
+ "epoch": 1.4201210992081974,
2141
+ "grad_norm": 0.5893727155297599,
2142
+ "learning_rate": 3.5823407560849306e-05,
2143
+ "loss": 0.3653,
2144
+ "step": 1525
2145
+ },
2146
+ {
2147
+ "epoch": 1.424778761061947,
2148
+ "grad_norm": 0.5476427446105051,
2149
+ "learning_rate": 3.57586742620404e-05,
2150
+ "loss": 0.3557,
2151
+ "step": 1530
2152
+ },
2153
+ {
2154
+ "epoch": 1.4294364229156964,
2155
+ "grad_norm": 0.691182790002671,
2156
+ "learning_rate": 3.5693940963231485e-05,
2157
+ "loss": 0.3706,
2158
+ "step": 1535
2159
+ },
2160
+ {
2161
+ "epoch": 1.4340940847694457,
2162
+ "grad_norm": 0.46156409326817516,
2163
+ "learning_rate": 3.5629207664422585e-05,
2164
+ "loss": 0.3614,
2165
+ "step": 1540
2166
+ },
2167
+ {
2168
+ "epoch": 1.4387517466231952,
2169
+ "grad_norm": 0.4598532920012943,
2170
+ "learning_rate": 3.556447436561368e-05,
2171
+ "loss": 0.3631,
2172
+ "step": 1545
2173
+ },
2174
+ {
2175
+ "epoch": 1.4434094084769447,
2176
+ "grad_norm": 0.4380166097581896,
2177
+ "learning_rate": 3.5499741066804764e-05,
2178
+ "loss": 0.3583,
2179
+ "step": 1550
2180
+ },
2181
+ {
2182
+ "epoch": 1.448067070330694,
2183
+ "grad_norm": 0.4064716472176242,
2184
+ "learning_rate": 3.543500776799586e-05,
2185
+ "loss": 0.3533,
2186
+ "step": 1555
2187
+ },
2188
+ {
2189
+ "epoch": 1.4527247321844434,
2190
+ "grad_norm": 0.4548851529702526,
2191
+ "learning_rate": 3.537027446918696e-05,
2192
+ "loss": 0.3599,
2193
+ "step": 1560
2194
+ },
2195
+ {
2196
+ "epoch": 1.4573823940381927,
2197
+ "grad_norm": 0.36916212723651665,
2198
+ "learning_rate": 3.530554117037804e-05,
2199
+ "loss": 0.3685,
2200
+ "step": 1565
2201
+ },
2202
+ {
2203
+ "epoch": 1.4620400558919422,
2204
+ "grad_norm": 0.5066725999452286,
2205
+ "learning_rate": 3.5240807871569136e-05,
2206
+ "loss": 0.381,
2207
+ "step": 1570
2208
+ },
2209
+ {
2210
+ "epoch": 1.4666977177456917,
2211
+ "grad_norm": 0.4774024861164161,
2212
+ "learning_rate": 3.517607457276023e-05,
2213
+ "loss": 0.3635,
2214
+ "step": 1575
2215
+ },
2216
+ {
2217
+ "epoch": 1.4713553795994412,
2218
+ "grad_norm": 0.5930294981464446,
2219
+ "learning_rate": 3.511134127395132e-05,
2220
+ "loss": 0.355,
2221
+ "step": 1580
2222
+ },
2223
+ {
2224
+ "epoch": 1.4760130414531905,
2225
+ "grad_norm": 0.6683615507217858,
2226
+ "learning_rate": 3.5046607975142415e-05,
2227
+ "loss": 0.3632,
2228
+ "step": 1585
2229
+ },
2230
+ {
2231
+ "epoch": 1.48067070330694,
2232
+ "grad_norm": 0.47781095190925266,
2233
+ "learning_rate": 3.498187467633351e-05,
2234
+ "loss": 0.3651,
2235
+ "step": 1590
2236
+ },
2237
+ {
2238
+ "epoch": 1.4853283651606892,
2239
+ "grad_norm": 0.4816343305435411,
2240
+ "learning_rate": 3.49171413775246e-05,
2241
+ "loss": 0.361,
2242
+ "step": 1595
2243
+ },
2244
+ {
2245
+ "epoch": 1.4899860270144387,
2246
+ "grad_norm": 0.36945600164162296,
2247
+ "learning_rate": 3.4852408078715694e-05,
2248
+ "loss": 0.3664,
2249
+ "step": 1600
2250
+ },
2251
+ {
2252
+ "epoch": 1.4946436888681882,
2253
+ "grad_norm": 0.42161998754880686,
2254
+ "learning_rate": 3.478767477990679e-05,
2255
+ "loss": 0.3566,
2256
+ "step": 1605
2257
+ },
2258
+ {
2259
+ "epoch": 1.4993013507219377,
2260
+ "grad_norm": 0.43171270393570554,
2261
+ "learning_rate": 3.472294148109787e-05,
2262
+ "loss": 0.3638,
2263
+ "step": 1610
2264
+ },
2265
+ {
2266
+ "epoch": 1.503959012575687,
2267
+ "grad_norm": 0.49449118003805265,
2268
+ "learning_rate": 3.465820818228897e-05,
2269
+ "loss": 0.3616,
2270
+ "step": 1615
2271
+ },
2272
+ {
2273
+ "epoch": 1.5086166744294365,
2274
+ "grad_norm": 0.5126145855254146,
2275
+ "learning_rate": 3.4593474883480066e-05,
2276
+ "loss": 0.3627,
2277
+ "step": 1620
2278
+ },
2279
+ {
2280
+ "epoch": 1.5132743362831858,
2281
+ "grad_norm": 0.4825580222932842,
2282
+ "learning_rate": 3.452874158467116e-05,
2283
+ "loss": 0.3666,
2284
+ "step": 1625
2285
+ },
2286
+ {
2287
+ "epoch": 1.5179319981369352,
2288
+ "grad_norm": 0.5265848281578551,
2289
+ "learning_rate": 3.4464008285862245e-05,
2290
+ "loss": 0.3633,
2291
+ "step": 1630
2292
+ },
2293
+ {
2294
+ "epoch": 1.5225896599906847,
2295
+ "grad_norm": 0.4810011855595015,
2296
+ "learning_rate": 3.4399274987053345e-05,
2297
+ "loss": 0.3748,
2298
+ "step": 1635
2299
+ },
2300
+ {
2301
+ "epoch": 1.5272473218444342,
2302
+ "grad_norm": 0.4566927190333215,
2303
+ "learning_rate": 3.433454168824444e-05,
2304
+ "loss": 0.3673,
2305
+ "step": 1640
2306
+ },
2307
+ {
2308
+ "epoch": 1.5319049836981835,
2309
+ "grad_norm": 0.46400710872493467,
2310
+ "learning_rate": 3.4269808389435524e-05,
2311
+ "loss": 0.3711,
2312
+ "step": 1645
2313
+ },
2314
+ {
2315
+ "epoch": 1.5365626455519328,
2316
+ "grad_norm": 3.1087721003712434,
2317
+ "learning_rate": 3.4205075090626624e-05,
2318
+ "loss": 0.356,
2319
+ "step": 1650
2320
+ },
2321
+ {
2322
+ "epoch": 1.5412203074056823,
2323
+ "grad_norm": 0.5034579559440693,
2324
+ "learning_rate": 3.414034179181772e-05,
2325
+ "loss": 0.3552,
2326
+ "step": 1655
2327
+ },
2328
+ {
2329
+ "epoch": 1.5458779692594318,
2330
+ "grad_norm": 0.4780598324542499,
2331
+ "learning_rate": 3.40756084930088e-05,
2332
+ "loss": 0.355,
2333
+ "step": 1660
2334
+ },
2335
+ {
2336
+ "epoch": 1.5505356311131813,
2337
+ "grad_norm": 0.5764212486237088,
2338
+ "learning_rate": 3.4010875194199896e-05,
2339
+ "loss": 0.3676,
2340
+ "step": 1665
2341
+ },
2342
+ {
2343
+ "epoch": 1.5551932929669308,
2344
+ "grad_norm": 0.5517039007987018,
2345
+ "learning_rate": 3.3946141895390996e-05,
2346
+ "loss": 0.3636,
2347
+ "step": 1670
2348
+ },
2349
+ {
2350
+ "epoch": 1.55985095482068,
2351
+ "grad_norm": 0.5058857939828647,
2352
+ "learning_rate": 3.388140859658208e-05,
2353
+ "loss": 0.362,
2354
+ "step": 1675
2355
+ },
2356
+ {
2357
+ "epoch": 1.5645086166744293,
2358
+ "grad_norm": 0.43254113359686863,
2359
+ "learning_rate": 3.3816675297773175e-05,
2360
+ "loss": 0.3689,
2361
+ "step": 1680
2362
+ },
2363
+ {
2364
+ "epoch": 1.5691662785281788,
2365
+ "grad_norm": 0.4639020956548089,
2366
+ "learning_rate": 3.375194199896427e-05,
2367
+ "loss": 0.3571,
2368
+ "step": 1685
2369
+ },
2370
+ {
2371
+ "epoch": 1.5738239403819283,
2372
+ "grad_norm": 0.5001606568137839,
2373
+ "learning_rate": 3.368720870015536e-05,
2374
+ "loss": 0.3644,
2375
+ "step": 1690
2376
+ },
2377
+ {
2378
+ "epoch": 1.5784816022356778,
2379
+ "grad_norm": 0.4373315768297557,
2380
+ "learning_rate": 3.3622475401346454e-05,
2381
+ "loss": 0.3612,
2382
+ "step": 1695
2383
+ },
2384
+ {
2385
+ "epoch": 1.583139264089427,
2386
+ "grad_norm": 0.4139251174179008,
2387
+ "learning_rate": 3.355774210253755e-05,
2388
+ "loss": 0.3658,
2389
+ "step": 1700
2390
+ },
2391
+ {
2392
+ "epoch": 1.5877969259431766,
2393
+ "grad_norm": 0.4322065090656477,
2394
+ "learning_rate": 3.349300880372864e-05,
2395
+ "loss": 0.3591,
2396
+ "step": 1705
2397
+ },
2398
+ {
2399
+ "epoch": 1.5924545877969258,
2400
+ "grad_norm": 0.4970626082566968,
2401
+ "learning_rate": 3.342827550491973e-05,
2402
+ "loss": 0.3663,
2403
+ "step": 1710
2404
+ },
2405
+ {
2406
+ "epoch": 1.5971122496506753,
2407
+ "grad_norm": 0.4705280367004464,
2408
+ "learning_rate": 3.3363542206110826e-05,
2409
+ "loss": 0.3671,
2410
+ "step": 1715
2411
+ },
2412
+ {
2413
+ "epoch": 1.6017699115044248,
2414
+ "grad_norm": 0.43124848527955606,
2415
+ "learning_rate": 3.329880890730191e-05,
2416
+ "loss": 0.3537,
2417
+ "step": 1720
2418
+ },
2419
+ {
2420
+ "epoch": 1.6064275733581743,
2421
+ "grad_norm": 0.5258412470469775,
2422
+ "learning_rate": 3.323407560849301e-05,
2423
+ "loss": 0.3603,
2424
+ "step": 1725
2425
+ },
2426
+ {
2427
+ "epoch": 1.6110852352119236,
2428
+ "grad_norm": 0.4396848395121731,
2429
+ "learning_rate": 3.3169342309684105e-05,
2430
+ "loss": 0.372,
2431
+ "step": 1730
2432
+ },
2433
+ {
2434
+ "epoch": 1.6157428970656729,
2435
+ "grad_norm": 0.4275239821085271,
2436
+ "learning_rate": 3.31046090108752e-05,
2437
+ "loss": 0.3715,
2438
+ "step": 1735
2439
+ },
2440
+ {
2441
+ "epoch": 1.6204005589194224,
2442
+ "grad_norm": 0.47043887246154587,
2443
+ "learning_rate": 3.3039875712066284e-05,
2444
+ "loss": 0.3523,
2445
+ "step": 1740
2446
+ },
2447
+ {
2448
+ "epoch": 1.6250582207731719,
2449
+ "grad_norm": 0.4830833939098779,
2450
+ "learning_rate": 3.2975142413257384e-05,
2451
+ "loss": 0.3823,
2452
+ "step": 1745
2453
+ },
2454
+ {
2455
+ "epoch": 1.6297158826269214,
2456
+ "grad_norm": 0.363713578471795,
2457
+ "learning_rate": 3.291040911444848e-05,
2458
+ "loss": 0.3601,
2459
+ "step": 1750
2460
+ },
2461
+ {
2462
+ "epoch": 1.6343735444806708,
2463
+ "grad_norm": 0.4199388157747959,
2464
+ "learning_rate": 3.284567581563956e-05,
2465
+ "loss": 0.3702,
2466
+ "step": 1755
2467
+ },
2468
+ {
2469
+ "epoch": 1.6390312063344201,
2470
+ "grad_norm": 0.42626426655806804,
2471
+ "learning_rate": 3.278094251683066e-05,
2472
+ "loss": 0.3554,
2473
+ "step": 1760
2474
+ },
2475
+ {
2476
+ "epoch": 1.6436888681881694,
2477
+ "grad_norm": 0.567374135835316,
2478
+ "learning_rate": 3.2716209218021756e-05,
2479
+ "loss": 0.359,
2480
+ "step": 1765
2481
+ },
2482
+ {
2483
+ "epoch": 1.648346530041919,
2484
+ "grad_norm": 0.43110033232228706,
2485
+ "learning_rate": 3.265147591921284e-05,
2486
+ "loss": 0.3542,
2487
+ "step": 1770
2488
+ },
2489
+ {
2490
+ "epoch": 1.6530041918956684,
2491
+ "grad_norm": 0.5238869056328617,
2492
+ "learning_rate": 3.2586742620403935e-05,
2493
+ "loss": 0.3678,
2494
+ "step": 1775
2495
+ },
2496
+ {
2497
+ "epoch": 1.6576618537494179,
2498
+ "grad_norm": 0.49792087625873993,
2499
+ "learning_rate": 3.2522009321595035e-05,
2500
+ "loss": 0.3566,
2501
+ "step": 1780
2502
+ },
2503
+ {
2504
+ "epoch": 1.6623195156031674,
2505
+ "grad_norm": 0.44022742289658967,
2506
+ "learning_rate": 3.245727602278612e-05,
2507
+ "loss": 0.3644,
2508
+ "step": 1785
2509
+ },
2510
+ {
2511
+ "epoch": 1.6669771774569166,
2512
+ "grad_norm": 0.4020789247285759,
2513
+ "learning_rate": 3.2392542723977214e-05,
2514
+ "loss": 0.3558,
2515
+ "step": 1790
2516
+ },
2517
+ {
2518
+ "epoch": 1.671634839310666,
2519
+ "grad_norm": 0.46941803599205045,
2520
+ "learning_rate": 3.232780942516831e-05,
2521
+ "loss": 0.3554,
2522
+ "step": 1795
2523
+ },
2524
+ {
2525
+ "epoch": 1.6762925011644154,
2526
+ "grad_norm": 0.44615738959074275,
2527
+ "learning_rate": 3.22630761263594e-05,
2528
+ "loss": 0.3532,
2529
+ "step": 1800
2530
+ },
2531
+ {
2532
+ "epoch": 1.680950163018165,
2533
+ "grad_norm": 0.5307510022659958,
2534
+ "learning_rate": 3.219834282755049e-05,
2535
+ "loss": 0.3613,
2536
+ "step": 1805
2537
+ },
2538
+ {
2539
+ "epoch": 1.6856078248719144,
2540
+ "grad_norm": 0.43074684583169204,
2541
+ "learning_rate": 3.2133609528741586e-05,
2542
+ "loss": 0.3596,
2543
+ "step": 1810
2544
+ },
2545
+ {
2546
+ "epoch": 1.6902654867256637,
2547
+ "grad_norm": 0.45453772826067634,
2548
+ "learning_rate": 3.206887622993268e-05,
2549
+ "loss": 0.3605,
2550
+ "step": 1815
2551
+ },
2552
+ {
2553
+ "epoch": 1.6949231485794132,
2554
+ "grad_norm": 0.39694233100152826,
2555
+ "learning_rate": 3.200414293112377e-05,
2556
+ "loss": 0.3484,
2557
+ "step": 1820
2558
+ },
2559
+ {
2560
+ "epoch": 1.6995808104331624,
2561
+ "grad_norm": 0.48125790946047087,
2562
+ "learning_rate": 3.1939409632314865e-05,
2563
+ "loss": 0.351,
2564
+ "step": 1825
2565
+ },
2566
+ {
2567
+ "epoch": 1.704238472286912,
2568
+ "grad_norm": 0.42999870591028383,
2569
+ "learning_rate": 3.187467633350596e-05,
2570
+ "loss": 0.356,
2571
+ "step": 1830
2572
+ },
2573
+ {
2574
+ "epoch": 1.7088961341406614,
2575
+ "grad_norm": 0.46596362181549944,
2576
+ "learning_rate": 3.180994303469705e-05,
2577
+ "loss": 0.3632,
2578
+ "step": 1835
2579
+ },
2580
+ {
2581
+ "epoch": 1.713553795994411,
2582
+ "grad_norm": 0.4325609693374574,
2583
+ "learning_rate": 3.1745209735888144e-05,
2584
+ "loss": 0.3575,
2585
+ "step": 1840
2586
+ },
2587
+ {
2588
+ "epoch": 1.7182114578481602,
2589
+ "grad_norm": 0.41540892625043885,
2590
+ "learning_rate": 3.168047643707924e-05,
2591
+ "loss": 0.3628,
2592
+ "step": 1845
2593
+ },
2594
+ {
2595
+ "epoch": 1.7228691197019095,
2596
+ "grad_norm": 0.4031078505421204,
2597
+ "learning_rate": 3.161574313827032e-05,
2598
+ "loss": 0.3703,
2599
+ "step": 1850
2600
+ },
2601
+ {
2602
+ "epoch": 1.727526781555659,
2603
+ "grad_norm": 0.41838515198339477,
2604
+ "learning_rate": 3.155100983946142e-05,
2605
+ "loss": 0.3518,
2606
+ "step": 1855
2607
+ },
2608
+ {
2609
+ "epoch": 1.7321844434094085,
2610
+ "grad_norm": 0.45646943466714157,
2611
+ "learning_rate": 3.1486276540652516e-05,
2612
+ "loss": 0.3755,
2613
+ "step": 1860
2614
+ },
2615
+ {
2616
+ "epoch": 1.736842105263158,
2617
+ "grad_norm": 0.585084433635785,
2618
+ "learning_rate": 3.14215432418436e-05,
2619
+ "loss": 0.3552,
2620
+ "step": 1865
2621
+ },
2622
+ {
2623
+ "epoch": 1.7414997671169075,
2624
+ "grad_norm": 0.3911867696777629,
2625
+ "learning_rate": 3.13568099430347e-05,
2626
+ "loss": 0.3595,
2627
+ "step": 1870
2628
+ },
2629
+ {
2630
+ "epoch": 1.7461574289706567,
2631
+ "grad_norm": 0.4680970227691401,
2632
+ "learning_rate": 3.1292076644225795e-05,
2633
+ "loss": 0.3749,
2634
+ "step": 1875
2635
+ },
2636
+ {
2637
+ "epoch": 1.750815090824406,
2638
+ "grad_norm": 0.5489571566456214,
2639
+ "learning_rate": 3.122734334541688e-05,
2640
+ "loss": 0.3652,
2641
+ "step": 1880
2642
+ },
2643
+ {
2644
+ "epoch": 1.7554727526781555,
2645
+ "grad_norm": 0.539830040482289,
2646
+ "learning_rate": 3.1162610046607974e-05,
2647
+ "loss": 0.3672,
2648
+ "step": 1885
2649
+ },
2650
+ {
2651
+ "epoch": 1.760130414531905,
2652
+ "grad_norm": 0.540754916595141,
2653
+ "learning_rate": 3.1097876747799074e-05,
2654
+ "loss": 0.3641,
2655
+ "step": 1890
2656
+ },
2657
+ {
2658
+ "epoch": 1.7647880763856545,
2659
+ "grad_norm": 0.5219699672209992,
2660
+ "learning_rate": 3.103314344899016e-05,
2661
+ "loss": 0.373,
2662
+ "step": 1895
2663
+ },
2664
+ {
2665
+ "epoch": 1.7694457382394038,
2666
+ "grad_norm": 0.377337385788726,
2667
+ "learning_rate": 3.096841015018125e-05,
2668
+ "loss": 0.3611,
2669
+ "step": 1900
2670
+ },
2671
+ {
2672
+ "epoch": 1.7741034000931533,
2673
+ "grad_norm": 0.48563812072688267,
2674
+ "learning_rate": 3.0903676851372346e-05,
2675
+ "loss": 0.3625,
2676
+ "step": 1905
2677
+ },
2678
+ {
2679
+ "epoch": 1.7787610619469025,
2680
+ "grad_norm": 0.5845893805457868,
2681
+ "learning_rate": 3.083894355256344e-05,
2682
+ "loss": 0.3551,
2683
+ "step": 1910
2684
+ },
2685
+ {
2686
+ "epoch": 1.783418723800652,
2687
+ "grad_norm": 0.5664348577055764,
2688
+ "learning_rate": 3.077421025375453e-05,
2689
+ "loss": 0.3508,
2690
+ "step": 1915
2691
+ },
2692
+ {
2693
+ "epoch": 1.7880763856544015,
2694
+ "grad_norm": 0.4921575417307053,
2695
+ "learning_rate": 3.0709476954945625e-05,
2696
+ "loss": 0.3564,
2697
+ "step": 1920
2698
+ },
2699
+ {
2700
+ "epoch": 1.792734047508151,
2701
+ "grad_norm": 0.41530413831923074,
2702
+ "learning_rate": 3.064474365613672e-05,
2703
+ "loss": 0.3644,
2704
+ "step": 1925
2705
+ },
2706
+ {
2707
+ "epoch": 1.7973917093619003,
2708
+ "grad_norm": 0.45996940636819483,
2709
+ "learning_rate": 3.058001035732781e-05,
2710
+ "loss": 0.354,
2711
+ "step": 1930
2712
+ },
2713
+ {
2714
+ "epoch": 1.8020493712156498,
2715
+ "grad_norm": 0.5159015527502255,
2716
+ "learning_rate": 3.0515277058518904e-05,
2717
+ "loss": 0.3509,
2718
+ "step": 1935
2719
+ },
2720
+ {
2721
+ "epoch": 1.806707033069399,
2722
+ "grad_norm": 0.5152021259341406,
2723
+ "learning_rate": 3.045054375971e-05,
2724
+ "loss": 0.353,
2725
+ "step": 1940
2726
+ },
2727
+ {
2728
+ "epoch": 1.8113646949231486,
2729
+ "grad_norm": 0.42063698743452166,
2730
+ "learning_rate": 3.0385810460901086e-05,
2731
+ "loss": 0.3635,
2732
+ "step": 1945
2733
+ },
2734
+ {
2735
+ "epoch": 1.816022356776898,
2736
+ "grad_norm": 0.4197227843543687,
2737
+ "learning_rate": 3.0321077162092183e-05,
2738
+ "loss": 0.3552,
2739
+ "step": 1950
2740
+ },
2741
+ {
2742
+ "epoch": 1.8206800186306475,
2743
+ "grad_norm": 0.4386043250783782,
2744
+ "learning_rate": 3.0256343863283276e-05,
2745
+ "loss": 0.3584,
2746
+ "step": 1955
2747
+ },
2748
+ {
2749
+ "epoch": 1.8253376804843968,
2750
+ "grad_norm": 0.43078152623180066,
2751
+ "learning_rate": 3.0191610564474365e-05,
2752
+ "loss": 0.3594,
2753
+ "step": 1960
2754
+ },
2755
+ {
2756
+ "epoch": 1.829995342338146,
2757
+ "grad_norm": 0.41453786330622155,
2758
+ "learning_rate": 3.0126877265665458e-05,
2759
+ "loss": 0.3617,
2760
+ "step": 1965
2761
+ },
2762
+ {
2763
+ "epoch": 1.8346530041918956,
2764
+ "grad_norm": 0.44407746662226144,
2765
+ "learning_rate": 3.0062143966856555e-05,
2766
+ "loss": 0.3563,
2767
+ "step": 1970
2768
+ },
2769
+ {
2770
+ "epoch": 1.839310666045645,
2771
+ "grad_norm": 0.4867694541510763,
2772
+ "learning_rate": 2.9997410668047644e-05,
2773
+ "loss": 0.362,
2774
+ "step": 1975
2775
+ },
2776
+ {
2777
+ "epoch": 1.8439683278993946,
2778
+ "grad_norm": 0.40475826775733315,
2779
+ "learning_rate": 2.9932677369238737e-05,
2780
+ "loss": 0.3543,
2781
+ "step": 1980
2782
+ },
2783
+ {
2784
+ "epoch": 1.848625989753144,
2785
+ "grad_norm": 0.439099325394701,
2786
+ "learning_rate": 2.9867944070429834e-05,
2787
+ "loss": 0.3683,
2788
+ "step": 1985
2789
+ },
2790
+ {
2791
+ "epoch": 1.8532836516068933,
2792
+ "grad_norm": 0.45176402716808195,
2793
+ "learning_rate": 2.980321077162092e-05,
2794
+ "loss": 0.3627,
2795
+ "step": 1990
2796
+ },
2797
+ {
2798
+ "epoch": 1.8579413134606426,
2799
+ "grad_norm": 0.39408125423927187,
2800
+ "learning_rate": 2.9738477472812016e-05,
2801
+ "loss": 0.3499,
2802
+ "step": 1995
2803
+ },
2804
+ {
2805
+ "epoch": 1.8625989753143921,
2806
+ "grad_norm": 0.37626176509085807,
2807
+ "learning_rate": 2.967374417400311e-05,
2808
+ "loss": 0.3594,
2809
+ "step": 2000
2810
+ },
2811
+ {
2812
+ "epoch": 1.8672566371681416,
2813
+ "grad_norm": 0.481992098530276,
2814
+ "learning_rate": 2.96090108751942e-05,
2815
+ "loss": 0.3655,
2816
+ "step": 2005
2817
+ },
2818
+ {
2819
+ "epoch": 1.871914299021891,
2820
+ "grad_norm": 0.5134713155275991,
2821
+ "learning_rate": 2.9544277576385292e-05,
2822
+ "loss": 0.3577,
2823
+ "step": 2010
2824
+ },
2825
+ {
2826
+ "epoch": 1.8765719608756404,
2827
+ "grad_norm": 0.45283837936405347,
2828
+ "learning_rate": 2.9479544277576388e-05,
2829
+ "loss": 0.3674,
2830
+ "step": 2015
2831
+ },
2832
+ {
2833
+ "epoch": 1.8812296227293899,
2834
+ "grad_norm": 0.5331456148592331,
2835
+ "learning_rate": 2.941481097876748e-05,
2836
+ "loss": 0.3547,
2837
+ "step": 2020
2838
+ },
2839
+ {
2840
+ "epoch": 1.8858872845831391,
2841
+ "grad_norm": 0.39483636058222715,
2842
+ "learning_rate": 2.935007767995857e-05,
2843
+ "loss": 0.3587,
2844
+ "step": 2025
2845
+ },
2846
+ {
2847
+ "epoch": 1.8905449464368886,
2848
+ "grad_norm": 0.4169841661038559,
2849
+ "learning_rate": 2.9285344381149664e-05,
2850
+ "loss": 0.3562,
2851
+ "step": 2030
2852
+ },
2853
+ {
2854
+ "epoch": 1.8952026082906381,
2855
+ "grad_norm": 0.43263533560964307,
2856
+ "learning_rate": 2.922061108234076e-05,
2857
+ "loss": 0.3539,
2858
+ "step": 2035
2859
+ },
2860
+ {
2861
+ "epoch": 1.8998602701443876,
2862
+ "grad_norm": 1.0528416955125015,
2863
+ "learning_rate": 2.915587778353185e-05,
2864
+ "loss": 0.3656,
2865
+ "step": 2040
2866
+ },
2867
+ {
2868
+ "epoch": 1.904517931998137,
2869
+ "grad_norm": 0.46126800798411016,
2870
+ "learning_rate": 2.9091144484722943e-05,
2871
+ "loss": 0.3663,
2872
+ "step": 2045
2873
+ },
2874
+ {
2875
+ "epoch": 1.9091755938518864,
2876
+ "grad_norm": 0.439289961393162,
2877
+ "learning_rate": 2.902641118591404e-05,
2878
+ "loss": 0.3611,
2879
+ "step": 2050
2880
+ },
2881
+ {
2882
+ "epoch": 1.9138332557056357,
2883
+ "grad_norm": 0.4075534808040331,
2884
+ "learning_rate": 2.8961677887105125e-05,
2885
+ "loss": 0.3595,
2886
+ "step": 2055
2887
+ },
2888
+ {
2889
+ "epoch": 1.9184909175593852,
2890
+ "grad_norm": 0.44070429368587694,
2891
+ "learning_rate": 2.889694458829622e-05,
2892
+ "loss": 0.3554,
2893
+ "step": 2060
2894
+ },
2895
+ {
2896
+ "epoch": 1.9231485794131347,
2897
+ "grad_norm": 0.4205873258048559,
2898
+ "learning_rate": 2.8832211289487315e-05,
2899
+ "loss": 0.3575,
2900
+ "step": 2065
2901
+ },
2902
+ {
2903
+ "epoch": 1.9278062412668842,
2904
+ "grad_norm": 0.43443666788930957,
2905
+ "learning_rate": 2.8767477990678404e-05,
2906
+ "loss": 0.3598,
2907
+ "step": 2070
2908
+ },
2909
+ {
2910
+ "epoch": 1.9324639031206334,
2911
+ "grad_norm": 0.4455711783118789,
2912
+ "learning_rate": 2.8702744691869497e-05,
2913
+ "loss": 0.3591,
2914
+ "step": 2075
2915
+ },
2916
+ {
2917
+ "epoch": 1.9371215649743827,
2918
+ "grad_norm": 0.4633217530624874,
2919
+ "learning_rate": 2.8638011393060594e-05,
2920
+ "loss": 0.352,
2921
+ "step": 2080
2922
+ },
2923
+ {
2924
+ "epoch": 1.9417792268281322,
2925
+ "grad_norm": 0.5993966669585514,
2926
+ "learning_rate": 2.8573278094251683e-05,
2927
+ "loss": 0.3624,
2928
+ "step": 2085
2929
+ },
2930
+ {
2931
+ "epoch": 1.9464368886818817,
2932
+ "grad_norm": 0.47925709795843613,
2933
+ "learning_rate": 2.8508544795442776e-05,
2934
+ "loss": 0.347,
2935
+ "step": 2090
2936
+ },
2937
+ {
2938
+ "epoch": 1.9510945505356312,
2939
+ "grad_norm": 0.47665074915536965,
2940
+ "learning_rate": 2.8443811496633873e-05,
2941
+ "loss": 0.3548,
2942
+ "step": 2095
2943
+ },
2944
+ {
2945
+ "epoch": 1.9557522123893807,
2946
+ "grad_norm": 0.40675691505800643,
2947
+ "learning_rate": 2.837907819782496e-05,
2948
+ "loss": 0.3562,
2949
+ "step": 2100
2950
+ },
2951
+ {
2952
+ "epoch": 1.96040987424313,
2953
+ "grad_norm": 0.4625409302809586,
2954
+ "learning_rate": 2.8314344899016055e-05,
2955
+ "loss": 0.3644,
2956
+ "step": 2105
2957
+ },
2958
+ {
2959
+ "epoch": 1.9650675360968792,
2960
+ "grad_norm": 0.5689003662588716,
2961
+ "learning_rate": 2.8249611600207148e-05,
2962
+ "loss": 0.3484,
2963
+ "step": 2110
2964
+ },
2965
+ {
2966
+ "epoch": 1.9697251979506287,
2967
+ "grad_norm": 0.5279179832753244,
2968
+ "learning_rate": 2.8184878301398244e-05,
2969
+ "loss": 0.3563,
2970
+ "step": 2115
2971
+ },
2972
+ {
2973
+ "epoch": 1.9743828598043782,
2974
+ "grad_norm": 0.4038383583754883,
2975
+ "learning_rate": 2.812014500258933e-05,
2976
+ "loss": 0.3593,
2977
+ "step": 2120
2978
+ },
2979
+ {
2980
+ "epoch": 1.9790405216581277,
2981
+ "grad_norm": 0.4094844987063613,
2982
+ "learning_rate": 2.8055411703780427e-05,
2983
+ "loss": 0.3547,
2984
+ "step": 2125
2985
+ },
2986
+ {
2987
+ "epoch": 1.983698183511877,
2988
+ "grad_norm": 0.40606227898532676,
2989
+ "learning_rate": 2.799067840497152e-05,
2990
+ "loss": 0.3564,
2991
+ "step": 2130
2992
+ },
2993
+ {
2994
+ "epoch": 1.9883558453656265,
2995
+ "grad_norm": 0.39391611988157177,
2996
+ "learning_rate": 2.792594510616261e-05,
2997
+ "loss": 0.3628,
2998
+ "step": 2135
2999
+ },
3000
+ {
3001
+ "epoch": 1.9930135072193758,
3002
+ "grad_norm": 0.5333474858390276,
3003
+ "learning_rate": 2.7861211807353703e-05,
3004
+ "loss": 0.3614,
3005
+ "step": 2140
3006
+ },
3007
+ {
3008
+ "epoch": 1.9976711690731253,
3009
+ "grad_norm": 0.4886820775711789,
3010
+ "learning_rate": 2.77964785085448e-05,
3011
+ "loss": 0.3619,
3012
+ "step": 2145
3013
+ }
3014
+ ],
3015
+ "logging_steps": 5,
3016
+ "max_steps": 4292,
3017
+ "num_input_tokens_seen": 0,
3018
+ "num_train_epochs": 4,
3019
+ "save_steps": 500,
3020
+ "stateful_callbacks": {
3021
+ "TrainerControl": {
3022
+ "args": {
3023
+ "should_epoch_stop": false,
3024
+ "should_evaluate": false,
3025
+ "should_log": false,
3026
+ "should_save": true,
3027
+ "should_training_stop": false
3028
+ },
3029
+ "attributes": {}
3030
+ }
3031
+ },
3032
+ "total_flos": 1.8391372660484342e+18,
3033
+ "train_batch_size": 1,
3034
+ "trial_name": null,
3035
+ "trial_params": null
3036
+ }
checkpoint-2148/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e05f31de2ff1ea05b6b40008fe030314954a34489cd1e304ab649211e4763d9
3
+ size 7416
checkpoint-2148/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2148/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)