ZMC2019 commited on
Commit
5e80444
·
verified ·
1 Parent(s): 0260116

Training in progress, epoch 1, checkpoint

Browse files
Files changed (42) hide show
  1. checkpoint-1074/added_tokens.json +24 -0
  2. checkpoint-1074/config.json +29 -0
  3. checkpoint-1074/generation_config.json +14 -0
  4. checkpoint-1074/global_step1073/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-1074/global_step1073/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1074/global_step1073/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1074/global_step1073/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1074/global_step1073/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1074/global_step1073/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1074/global_step1073/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1074/global_step1073/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1074/global_step1073/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1074/global_step1073/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-1074/global_step1073/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-1074/global_step1073/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-1074/global_step1073/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-1074/global_step1073/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-1074/global_step1073/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-1074/global_step1073/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-1074/latest +1 -0
  21. checkpoint-1074/merges.txt +0 -0
  22. checkpoint-1074/model-00001-of-00004.safetensors +3 -0
  23. checkpoint-1074/model-00002-of-00004.safetensors +3 -0
  24. checkpoint-1074/model-00003-of-00004.safetensors +3 -0
  25. checkpoint-1074/model-00004-of-00004.safetensors +3 -0
  26. checkpoint-1074/model.safetensors.index.json +542 -0
  27. checkpoint-1074/rng_state_0.pth +3 -0
  28. checkpoint-1074/rng_state_1.pth +3 -0
  29. checkpoint-1074/rng_state_2.pth +3 -0
  30. checkpoint-1074/rng_state_3.pth +3 -0
  31. checkpoint-1074/rng_state_4.pth +3 -0
  32. checkpoint-1074/rng_state_5.pth +3 -0
  33. checkpoint-1074/rng_state_6.pth +3 -0
  34. checkpoint-1074/rng_state_7.pth +3 -0
  35. checkpoint-1074/scheduler.pt +3 -0
  36. checkpoint-1074/special_tokens_map.json +25 -0
  37. checkpoint-1074/tokenizer.json +3 -0
  38. checkpoint-1074/tokenizer_config.json +208 -0
  39. checkpoint-1074/trainer_state.json +1531 -0
  40. checkpoint-1074/training_args.bin +3 -0
  41. checkpoint-1074/vocab.json +0 -0
  42. checkpoint-1074/zero_to_fp32.py +674 -0
checkpoint-1074/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1074/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen7B-HP-AMP",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-1074/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
checkpoint-1074/global_step1073/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c715d8b90f810ba9eb6a51ee32923b21307eabac99669dac385b6f19b1bb042e
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c4eb36f780908c955a2fc7598c48d61df94b81979f1e50b09ee782bf4087389
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3d77fb2ec116ec13153de06500320604b4b267954157129ac5387ad457e93e1
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2becf97f723acab063555eb263375a22eb2668a69dbad27a3b51985afa432a1
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc99889efd17f016407f9e3858c2cee4d8874568dbb1f20edb710fef686eca0
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af84a64a620bfbb38e0438189a43c3a4a3ad4c4eb8ef67d31ece633ad07a38a1
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29aa76404eabb4c839db5015af426f81b822600599c84b1f511d9fa2364fc2a6
3
+ size 12117257612
checkpoint-1074/global_step1073/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23fea1c7eda7dfb4202b306b26aa8aeec28639e684fcb2d27e689b46424c05e9
3
+ size 12117257612
checkpoint-1074/global_step1073/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb75ac9fe56e23d28dec8635a7f787121527e4d553939192bd5f7bde96974b4
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:726e3bc6e1dfe4011d280b48c0a6d7bbb7636663d1fdeed8609309f09ddee55a
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd52a297faca96c41475493644fdfeb7eac154f77cfe6548568fe56a0dcf83e1
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65932e073ff7dfa550398670963ac87d097607910763a811b20924d267623eba
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:058d98903fe29a11e14a74760826c6ea4d4272a64a99d7c00ee48958c95c3dda
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e79cfb4db5d8ab127ef2977961ec3f154996870b61624f860716ee170c60d3
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48059c38d98e3779c27864db6d8da143dfcf13cc618c5e3c2f102f928aa5b6da
3
+ size 256905
checkpoint-1074/global_step1073/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ca75c26bac4e9f61eb20e64b2240e2d01bcf049705e6ad155ad54a731542c61
3
+ size 256905
checkpoint-1074/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1073
checkpoint-1074/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1074/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1dbc8d4e7e3d3e580d6456375285b81570f7f5c6321bd51270baa0862579895
3
+ size 4947447072
checkpoint-1074/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc5ef666c6d7b47e635f9fe6fc570c5f3253c63a71dd9f89638eedd3237f9df
3
+ size 4991571912
checkpoint-1074/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c4c6f9e8aeedb465511b459e46c26d65156d8fc83e6e79c5b688ae5f752b557
3
+ size 4991571984
checkpoint-1074/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61097cda91eab09ff3c2b23ede744e38b8275f19680f02c8eaf3d684e2901c25
3
+ size 1225807416
checkpoint-1074/model.safetensors.index.json ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16156336672
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
33
+ "model.layers.1.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.1.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
35
+ "model.layers.1.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.1.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
37
+ "model.layers.1.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
38
+ "model.layers.1.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
45
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.10.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
52
+ "model.layers.10.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.10.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
54
+ "model.layers.10.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.10.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
56
+ "model.layers.10.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
57
+ "model.layers.10.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
59
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
64
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.11.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
71
+ "model.layers.11.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.11.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
73
+ "model.layers.11.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.11.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
75
+ "model.layers.11.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
76
+ "model.layers.11.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
81
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
83
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.12.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
90
+ "model.layers.12.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.12.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
92
+ "model.layers.12.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.12.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
94
+ "model.layers.12.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
95
+ "model.layers.12.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
97
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
100
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.13.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
109
+ "model.layers.13.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.13.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.13.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.13.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
113
+ "model.layers.13.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.13.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
119
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
121
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.14.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.14.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.14.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
130
+ "model.layers.14.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.14.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
132
+ "model.layers.14.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
133
+ "model.layers.14.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
135
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
138
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
140
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.15.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
147
+ "model.layers.15.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.15.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
149
+ "model.layers.15.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.15.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
151
+ "model.layers.15.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
152
+ "model.layers.15.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
154
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
157
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
159
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.16.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
166
+ "model.layers.16.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.16.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
168
+ "model.layers.16.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.16.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
170
+ "model.layers.16.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
171
+ "model.layers.16.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
173
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
176
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
178
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.17.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
185
+ "model.layers.17.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.17.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
187
+ "model.layers.17.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.17.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
189
+ "model.layers.17.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
190
+ "model.layers.17.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
192
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
195
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
197
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.18.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
204
+ "model.layers.18.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.18.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.18.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.18.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
208
+ "model.layers.18.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.18.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
214
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
216
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.19.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.19.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.19.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
225
+ "model.layers.19.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.19.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
227
+ "model.layers.19.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
228
+ "model.layers.19.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.2.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
242
+ "model.layers.2.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.2.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
244
+ "model.layers.2.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.2.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
246
+ "model.layers.2.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
247
+ "model.layers.2.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
249
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
252
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
254
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.20.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
261
+ "model.layers.20.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.20.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
263
+ "model.layers.20.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.20.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
265
+ "model.layers.20.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.20.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
268
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
273
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.21.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
280
+ "model.layers.21.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.21.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
282
+ "model.layers.21.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.21.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
284
+ "model.layers.21.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
285
+ "model.layers.21.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
287
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
290
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
292
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.22.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
299
+ "model.layers.22.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.22.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
301
+ "model.layers.22.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.22.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
303
+ "model.layers.22.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
304
+ "model.layers.22.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
306
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
309
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
311
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.23.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
318
+ "model.layers.23.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.23.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
320
+ "model.layers.23.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.23.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
322
+ "model.layers.23.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
323
+ "model.layers.23.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
325
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
328
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
330
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.24.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
337
+ "model.layers.24.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.24.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
339
+ "model.layers.24.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.24.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
341
+ "model.layers.24.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
342
+ "model.layers.24.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
343
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
344
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
345
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
347
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
349
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
350
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.25.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
356
+ "model.layers.25.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.25.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
358
+ "model.layers.25.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.25.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
360
+ "model.layers.25.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
361
+ "model.layers.25.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
362
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
363
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
365
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
366
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
367
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
368
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
369
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
370
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
371
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
372
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
373
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
374
+ "model.layers.26.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
375
+ "model.layers.26.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
376
+ "model.layers.26.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
377
+ "model.layers.26.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
378
+ "model.layers.26.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
379
+ "model.layers.26.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
380
+ "model.layers.26.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
381
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
382
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
383
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
384
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
385
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
386
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
387
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
388
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
389
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
390
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
391
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
392
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
393
+ "model.layers.27.self_attn.amp_k_proj.bias": "model-00003-of-00004.safetensors",
394
+ "model.layers.27.self_attn.amp_k_proj.weight": "model-00003-of-00004.safetensors",
395
+ "model.layers.27.self_attn.amp_q_proj.bias": "model-00003-of-00004.safetensors",
396
+ "model.layers.27.self_attn.amp_q_proj.weight": "model-00003-of-00004.safetensors",
397
+ "model.layers.27.self_attn.amp_scaler": "model-00003-of-00004.safetensors",
398
+ "model.layers.27.self_attn.amp_v_proj.bias": "model-00003-of-00004.safetensors",
399
+ "model.layers.27.self_attn.amp_v_proj.weight": "model-00003-of-00004.safetensors",
400
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
401
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
402
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
403
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
404
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
405
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
406
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
407
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.3.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
413
+ "model.layers.3.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.3.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
415
+ "model.layers.3.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.3.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
417
+ "model.layers.3.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
418
+ "model.layers.3.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
420
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
422
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
423
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
425
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
427
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
428
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
429
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
430
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
431
+ "model.layers.4.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
432
+ "model.layers.4.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
433
+ "model.layers.4.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
434
+ "model.layers.4.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.layers.4.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
436
+ "model.layers.4.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
437
+ "model.layers.4.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
438
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
439
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
440
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
441
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
442
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
443
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
444
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
445
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
446
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
447
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
448
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
449
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
450
+ "model.layers.5.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
451
+ "model.layers.5.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
452
+ "model.layers.5.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
453
+ "model.layers.5.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
454
+ "model.layers.5.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
455
+ "model.layers.5.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
456
+ "model.layers.5.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
457
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
458
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
459
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
460
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
461
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
462
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
463
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
464
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
465
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
466
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
467
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
469
+ "model.layers.6.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
470
+ "model.layers.6.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
471
+ "model.layers.6.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
472
+ "model.layers.6.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
473
+ "model.layers.6.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
474
+ "model.layers.6.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
475
+ "model.layers.6.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
476
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
477
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
478
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
479
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
480
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
481
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
482
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
483
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
484
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
485
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
486
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
487
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
488
+ "model.layers.7.self_attn.amp_k_proj.bias": "model-00001-of-00004.safetensors",
489
+ "model.layers.7.self_attn.amp_k_proj.weight": "model-00001-of-00004.safetensors",
490
+ "model.layers.7.self_attn.amp_q_proj.bias": "model-00001-of-00004.safetensors",
491
+ "model.layers.7.self_attn.amp_q_proj.weight": "model-00001-of-00004.safetensors",
492
+ "model.layers.7.self_attn.amp_scaler": "model-00001-of-00004.safetensors",
493
+ "model.layers.7.self_attn.amp_v_proj.bias": "model-00001-of-00004.safetensors",
494
+ "model.layers.7.self_attn.amp_v_proj.weight": "model-00001-of-00004.safetensors",
495
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
496
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
497
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
498
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
499
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
500
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
501
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
502
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
503
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
504
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
505
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
506
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
507
+ "model.layers.8.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
508
+ "model.layers.8.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
509
+ "model.layers.8.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
510
+ "model.layers.8.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
511
+ "model.layers.8.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
512
+ "model.layers.8.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
513
+ "model.layers.8.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
514
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
515
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
516
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
517
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
518
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
519
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
520
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
521
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
522
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
523
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
524
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
525
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
526
+ "model.layers.9.self_attn.amp_k_proj.bias": "model-00002-of-00004.safetensors",
527
+ "model.layers.9.self_attn.amp_k_proj.weight": "model-00002-of-00004.safetensors",
528
+ "model.layers.9.self_attn.amp_q_proj.bias": "model-00002-of-00004.safetensors",
529
+ "model.layers.9.self_attn.amp_q_proj.weight": "model-00002-of-00004.safetensors",
530
+ "model.layers.9.self_attn.amp_scaler": "model-00002-of-00004.safetensors",
531
+ "model.layers.9.self_attn.amp_v_proj.bias": "model-00002-of-00004.safetensors",
532
+ "model.layers.9.self_attn.amp_v_proj.weight": "model-00002-of-00004.safetensors",
533
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
534
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
535
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
536
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
537
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
538
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
539
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
540
+ "model.norm.weight": "model-00004-of-00004.safetensors"
541
+ }
542
+ }
checkpoint-1074/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
3
+ size 15984
checkpoint-1074/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
3
+ size 15984
checkpoint-1074/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
3
+ size 15984
checkpoint-1074/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
3
+ size 15984
checkpoint-1074/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
3
+ size 15984
checkpoint-1074/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
3
+ size 15984
checkpoint-1074/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
3
+ size 15984
checkpoint-1074/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
3
+ size 15984
checkpoint-1074/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57606794dee9a90df702f33dd592ea78d14796e587cadb0c4dafc213bf45eeaf
3
+ size 1064
checkpoint-1074/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-1074/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1074/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1074/trainer_state.json ADDED
@@ -0,0 +1,1531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1074,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004657661853749418,
13
+ "grad_norm": 27.66617259818207,
14
+ "learning_rate": 5.813953488372093e-07,
15
+ "loss": 1.2864,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.009315323707498836,
20
+ "grad_norm": 19.626216359351606,
21
+ "learning_rate": 1.1627906976744186e-06,
22
+ "loss": 1.2277,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.013972985561248253,
27
+ "grad_norm": 7.689899823367007,
28
+ "learning_rate": 1.744186046511628e-06,
29
+ "loss": 1.0529,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.018630647414997672,
34
+ "grad_norm": 4.9632975953671465,
35
+ "learning_rate": 2.325581395348837e-06,
36
+ "loss": 0.907,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.02328830926874709,
41
+ "grad_norm": 2.000237294817273,
42
+ "learning_rate": 2.9069767441860468e-06,
43
+ "loss": 0.7884,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.027945971122496506,
48
+ "grad_norm": 1.3650044798865562,
49
+ "learning_rate": 3.488372093023256e-06,
50
+ "loss": 0.7091,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.032603632976245925,
55
+ "grad_norm": 1.0145438785392298,
56
+ "learning_rate": 4.0697674418604655e-06,
57
+ "loss": 0.6666,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.037261294829995344,
62
+ "grad_norm": 0.7666883370082983,
63
+ "learning_rate": 4.651162790697674e-06,
64
+ "loss": 0.6289,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.04191895668374476,
69
+ "grad_norm": 0.6977041513064055,
70
+ "learning_rate": 5.232558139534884e-06,
71
+ "loss": 0.5772,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.04657661853749418,
76
+ "grad_norm": 0.6177135531852819,
77
+ "learning_rate": 5.8139534883720935e-06,
78
+ "loss": 0.5729,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.05123428039124359,
83
+ "grad_norm": 0.5909988418524453,
84
+ "learning_rate": 6.395348837209303e-06,
85
+ "loss": 0.5555,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.05589194224499301,
90
+ "grad_norm": 0.6995185567241584,
91
+ "learning_rate": 6.976744186046512e-06,
92
+ "loss": 0.5472,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.06054960409874243,
97
+ "grad_norm": 0.7744854841742352,
98
+ "learning_rate": 7.558139534883721e-06,
99
+ "loss": 0.5379,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.06520726595249185,
104
+ "grad_norm": 0.5473128068676195,
105
+ "learning_rate": 8.139534883720931e-06,
106
+ "loss": 0.5149,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.06986492780624126,
111
+ "grad_norm": 0.711636506166052,
112
+ "learning_rate": 8.72093023255814e-06,
113
+ "loss": 0.5151,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.07452258965999069,
118
+ "grad_norm": 0.6813906468319959,
119
+ "learning_rate": 9.302325581395349e-06,
120
+ "loss": 0.5252,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.0791802515137401,
125
+ "grad_norm": 0.7134287439415516,
126
+ "learning_rate": 9.883720930232558e-06,
127
+ "loss": 0.5024,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.08383791336748952,
132
+ "grad_norm": 0.6992933648203333,
133
+ "learning_rate": 1.0465116279069768e-05,
134
+ "loss": 0.5085,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.08849557522123894,
139
+ "grad_norm": 0.6462820616067007,
140
+ "learning_rate": 1.1046511627906977e-05,
141
+ "loss": 0.5129,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.09315323707498836,
146
+ "grad_norm": 0.67397577790992,
147
+ "learning_rate": 1.1627906976744187e-05,
148
+ "loss": 0.5034,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.09781089892873777,
153
+ "grad_norm": 0.7146380645525483,
154
+ "learning_rate": 1.2209302325581395e-05,
155
+ "loss": 0.506,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.10246856078248719,
160
+ "grad_norm": 0.7569877075727182,
161
+ "learning_rate": 1.2790697674418606e-05,
162
+ "loss": 0.4939,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.10712622263623661,
167
+ "grad_norm": 0.5765767741771239,
168
+ "learning_rate": 1.3372093023255814e-05,
169
+ "loss": 0.4932,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.11178388448998602,
174
+ "grad_norm": 0.7689970599513694,
175
+ "learning_rate": 1.3953488372093024e-05,
176
+ "loss": 0.5041,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.11644154634373545,
181
+ "grad_norm": 0.7710814056961762,
182
+ "learning_rate": 1.4534883720930233e-05,
183
+ "loss": 0.4846,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.12109920819748486,
188
+ "grad_norm": 0.8067799411588391,
189
+ "learning_rate": 1.5116279069767441e-05,
190
+ "loss": 0.4868,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.1257568700512343,
195
+ "grad_norm": 0.7337587312339595,
196
+ "learning_rate": 1.569767441860465e-05,
197
+ "loss": 0.4937,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.1304145319049837,
202
+ "grad_norm": 0.8156553975576142,
203
+ "learning_rate": 1.6279069767441862e-05,
204
+ "loss": 0.4871,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.1350721937587331,
209
+ "grad_norm": 0.9350450002033659,
210
+ "learning_rate": 1.686046511627907e-05,
211
+ "loss": 0.4972,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.13972985561248252,
216
+ "grad_norm": 0.7681334266478443,
217
+ "learning_rate": 1.744186046511628e-05,
218
+ "loss": 0.4907,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.14438751746623196,
223
+ "grad_norm": 0.84555038297673,
224
+ "learning_rate": 1.802325581395349e-05,
225
+ "loss": 0.4723,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.14904517931998137,
230
+ "grad_norm": 0.8372039362868026,
231
+ "learning_rate": 1.8604651162790697e-05,
232
+ "loss": 0.4793,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.1537028411737308,
237
+ "grad_norm": 0.7817304569895932,
238
+ "learning_rate": 1.918604651162791e-05,
239
+ "loss": 0.4798,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.1583605030274802,
244
+ "grad_norm": 0.9789922595882735,
245
+ "learning_rate": 1.9767441860465116e-05,
246
+ "loss": 0.4783,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.1630181648812296,
251
+ "grad_norm": 0.7335091977994727,
252
+ "learning_rate": 2.0348837209302328e-05,
253
+ "loss": 0.4893,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.16767582673497905,
258
+ "grad_norm": 0.8155578488051264,
259
+ "learning_rate": 2.0930232558139536e-05,
260
+ "loss": 0.484,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.17233348858872846,
265
+ "grad_norm": 0.8144677339935327,
266
+ "learning_rate": 2.1511627906976744e-05,
267
+ "loss": 0.482,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.17699115044247787,
272
+ "grad_norm": 0.8341691871989111,
273
+ "learning_rate": 2.2093023255813955e-05,
274
+ "loss": 0.4753,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.18164881229622729,
279
+ "grad_norm": 0.7550827853742104,
280
+ "learning_rate": 2.2674418604651163e-05,
281
+ "loss": 0.4811,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.18630647414997673,
286
+ "grad_norm": 0.726150592947813,
287
+ "learning_rate": 2.3255813953488374e-05,
288
+ "loss": 0.4548,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.19096413600372614,
293
+ "grad_norm": 0.9618454710454514,
294
+ "learning_rate": 2.3837209302325582e-05,
295
+ "loss": 0.4765,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.19562179785747555,
300
+ "grad_norm": 0.8357087005031101,
301
+ "learning_rate": 2.441860465116279e-05,
302
+ "loss": 0.4664,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.20027945971122496,
307
+ "grad_norm": 0.9769412255461828,
308
+ "learning_rate": 2.5e-05,
309
+ "loss": 0.4772,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.20493712156497437,
314
+ "grad_norm": 0.819002974551843,
315
+ "learning_rate": 2.5581395348837212e-05,
316
+ "loss": 0.4731,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.2095947834187238,
321
+ "grad_norm": 1.0374332843969527,
322
+ "learning_rate": 2.616279069767442e-05,
323
+ "loss": 0.4763,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.21425244527247322,
328
+ "grad_norm": 0.8985668587375348,
329
+ "learning_rate": 2.674418604651163e-05,
330
+ "loss": 0.4745,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.21891010712622264,
335
+ "grad_norm": 1.0814445549381904,
336
+ "learning_rate": 2.7325581395348836e-05,
337
+ "loss": 0.4695,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.22356776897997205,
342
+ "grad_norm": 1.0714624697860875,
343
+ "learning_rate": 2.7906976744186048e-05,
344
+ "loss": 0.4687,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.22822543083372146,
349
+ "grad_norm": 0.9839374258594388,
350
+ "learning_rate": 2.848837209302326e-05,
351
+ "loss": 0.4598,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.2328830926874709,
356
+ "grad_norm": 0.9846036088169035,
357
+ "learning_rate": 2.9069767441860467e-05,
358
+ "loss": 0.4569,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.2375407545412203,
363
+ "grad_norm": 0.7487150924303477,
364
+ "learning_rate": 2.9651162790697678e-05,
365
+ "loss": 0.4676,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.24219841639496972,
370
+ "grad_norm": 0.8226804932307876,
371
+ "learning_rate": 3.0232558139534883e-05,
372
+ "loss": 0.4722,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.24685607824871914,
377
+ "grad_norm": 0.7711022626726491,
378
+ "learning_rate": 3.081395348837209e-05,
379
+ "loss": 0.4658,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.2515137401024686,
384
+ "grad_norm": 0.8932122698414526,
385
+ "learning_rate": 3.13953488372093e-05,
386
+ "loss": 0.4557,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.25617140195621796,
391
+ "grad_norm": 0.7549553477075355,
392
+ "learning_rate": 3.197674418604651e-05,
393
+ "loss": 0.4716,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.2608290638099674,
398
+ "grad_norm": 1.203597171762952,
399
+ "learning_rate": 3.2558139534883724e-05,
400
+ "loss": 0.4602,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.26548672566371684,
405
+ "grad_norm": 0.6877770638858097,
406
+ "learning_rate": 3.313953488372093e-05,
407
+ "loss": 0.4589,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.2701443875174662,
412
+ "grad_norm": 0.9865065100124113,
413
+ "learning_rate": 3.372093023255814e-05,
414
+ "loss": 0.4577,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.27480204937121566,
419
+ "grad_norm": 0.9375168702189124,
420
+ "learning_rate": 3.430232558139535e-05,
421
+ "loss": 0.4516,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.27945971122496505,
426
+ "grad_norm": 0.7788845536490606,
427
+ "learning_rate": 3.488372093023256e-05,
428
+ "loss": 0.4633,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.2841173730787145,
433
+ "grad_norm": 0.8098072656748624,
434
+ "learning_rate": 3.5465116279069774e-05,
435
+ "loss": 0.4691,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.2887750349324639,
440
+ "grad_norm": 1.3633357913402282,
441
+ "learning_rate": 3.604651162790698e-05,
442
+ "loss": 0.4662,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.2934326967862133,
447
+ "grad_norm": 0.8073757027557402,
448
+ "learning_rate": 3.662790697674418e-05,
449
+ "loss": 0.4551,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.29809035863996275,
454
+ "grad_norm": 1.0699898191361614,
455
+ "learning_rate": 3.7209302325581394e-05,
456
+ "loss": 0.4614,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.30274802049371213,
461
+ "grad_norm": 0.7424537685527064,
462
+ "learning_rate": 3.7790697674418606e-05,
463
+ "loss": 0.4637,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.3074056823474616,
468
+ "grad_norm": 1.0663211887340074,
469
+ "learning_rate": 3.837209302325582e-05,
470
+ "loss": 0.463,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.312063344201211,
475
+ "grad_norm": 0.9616713033039357,
476
+ "learning_rate": 3.895348837209303e-05,
477
+ "loss": 0.4483,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.3167210060549604,
482
+ "grad_norm": 0.9289014338139833,
483
+ "learning_rate": 3.953488372093023e-05,
484
+ "loss": 0.4618,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.32137866790870984,
489
+ "grad_norm": 0.9205940376448726,
490
+ "learning_rate": 4.0116279069767444e-05,
491
+ "loss": 0.4516,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.3260363297624592,
496
+ "grad_norm": 0.9475824983358404,
497
+ "learning_rate": 4.0697674418604655e-05,
498
+ "loss": 0.4545,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.33069399161620866,
503
+ "grad_norm": 1.315055782839884,
504
+ "learning_rate": 4.127906976744187e-05,
505
+ "loss": 0.452,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.3353516534699581,
510
+ "grad_norm": 1.068696802277167,
511
+ "learning_rate": 4.186046511627907e-05,
512
+ "loss": 0.4625,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.3400093153237075,
517
+ "grad_norm": 1.036508382207286,
518
+ "learning_rate": 4.2441860465116276e-05,
519
+ "loss": 0.4615,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.3446669771774569,
524
+ "grad_norm": 0.9771206427059291,
525
+ "learning_rate": 4.302325581395349e-05,
526
+ "loss": 0.472,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.3493246390312063,
531
+ "grad_norm": 0.9364995309041826,
532
+ "learning_rate": 4.36046511627907e-05,
533
+ "loss": 0.4662,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.35398230088495575,
538
+ "grad_norm": 0.8666798423814609,
539
+ "learning_rate": 4.418604651162791e-05,
540
+ "loss": 0.4513,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.3586399627387052,
545
+ "grad_norm": 0.6625516854940565,
546
+ "learning_rate": 4.476744186046512e-05,
547
+ "loss": 0.4458,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.36329762459245457,
552
+ "grad_norm": 0.5910994980517921,
553
+ "learning_rate": 4.5348837209302326e-05,
554
+ "loss": 0.4518,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.367955286446204,
559
+ "grad_norm": 0.8576114090853963,
560
+ "learning_rate": 4.593023255813954e-05,
561
+ "loss": 0.4472,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.37261294829995345,
566
+ "grad_norm": 1.059751439208873,
567
+ "learning_rate": 4.651162790697675e-05,
568
+ "loss": 0.4453,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.37727061015370283,
573
+ "grad_norm": 0.7913724415049757,
574
+ "learning_rate": 4.709302325581396e-05,
575
+ "loss": 0.4492,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.3819282720074523,
580
+ "grad_norm": 0.7471961729660666,
581
+ "learning_rate": 4.7674418604651164e-05,
582
+ "loss": 0.4559,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.38658593386120166,
587
+ "grad_norm": 0.7938017748454547,
588
+ "learning_rate": 4.8255813953488375e-05,
589
+ "loss": 0.4556,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.3912435957149511,
594
+ "grad_norm": 0.861398782650763,
595
+ "learning_rate": 4.883720930232558e-05,
596
+ "loss": 0.4457,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.39590125756870054,
601
+ "grad_norm": 1.164899725237036,
602
+ "learning_rate": 4.941860465116279e-05,
603
+ "loss": 0.4619,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.4005589194224499,
608
+ "grad_norm": 0.9327630997758065,
609
+ "learning_rate": 5e-05,
610
+ "loss": 0.4553,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.40521658127619936,
615
+ "grad_norm": 0.7755438754585425,
616
+ "learning_rate": 4.9935266701191095e-05,
617
+ "loss": 0.4589,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.40987424312994875,
622
+ "grad_norm": 0.6084430372051816,
623
+ "learning_rate": 4.987053340238219e-05,
624
+ "loss": 0.4659,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.4145319049836982,
629
+ "grad_norm": 0.706361406749313,
630
+ "learning_rate": 4.980580010357328e-05,
631
+ "loss": 0.4454,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.4191895668374476,
636
+ "grad_norm": 0.8310997319677449,
637
+ "learning_rate": 4.9741066804764374e-05,
638
+ "loss": 0.4492,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.423847228691197,
643
+ "grad_norm": 0.7992980724203008,
644
+ "learning_rate": 4.967633350595546e-05,
645
+ "loss": 0.4677,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.42850489054494645,
650
+ "grad_norm": 0.7848440239850348,
651
+ "learning_rate": 4.961160020714656e-05,
652
+ "loss": 0.4484,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.43316255239869583,
657
+ "grad_norm": 0.6875355874505797,
658
+ "learning_rate": 4.954686690833765e-05,
659
+ "loss": 0.4592,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.43782021425244527,
664
+ "grad_norm": 0.9019111936374453,
665
+ "learning_rate": 4.948213360952874e-05,
666
+ "loss": 0.4507,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.4424778761061947,
671
+ "grad_norm": 0.9237443867694993,
672
+ "learning_rate": 4.941740031071983e-05,
673
+ "loss": 0.46,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.4471355379599441,
678
+ "grad_norm": 0.7227765777311265,
679
+ "learning_rate": 4.935266701191093e-05,
680
+ "loss": 0.4448,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.45179319981369354,
685
+ "grad_norm": 0.7627976373615327,
686
+ "learning_rate": 4.9287933713102025e-05,
687
+ "loss": 0.4467,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.4564508616674429,
692
+ "grad_norm": 0.8963050574087497,
693
+ "learning_rate": 4.922320041429311e-05,
694
+ "loss": 0.45,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.46110852352119236,
699
+ "grad_norm": 0.629147905901097,
700
+ "learning_rate": 4.915846711548421e-05,
701
+ "loss": 0.4427,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.4657661853749418,
706
+ "grad_norm": 0.5883243359451029,
707
+ "learning_rate": 4.9093733816675304e-05,
708
+ "loss": 0.4491,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.4704238472286912,
713
+ "grad_norm": 0.5369867711481909,
714
+ "learning_rate": 4.902900051786639e-05,
715
+ "loss": 0.4435,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.4750815090824406,
720
+ "grad_norm": 0.7877373044239472,
721
+ "learning_rate": 4.8964267219057483e-05,
722
+ "loss": 0.4392,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.47973917093619,
727
+ "grad_norm": 0.5720363420014942,
728
+ "learning_rate": 4.889953392024858e-05,
729
+ "loss": 0.4502,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.48439683278993945,
734
+ "grad_norm": 0.802768212629227,
735
+ "learning_rate": 4.883480062143967e-05,
736
+ "loss": 0.4479,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.4890544946436889,
741
+ "grad_norm": 0.9089354308220536,
742
+ "learning_rate": 4.877006732263076e-05,
743
+ "loss": 0.4562,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.49371215649743827,
748
+ "grad_norm": 0.9062598882129868,
749
+ "learning_rate": 4.8705334023821855e-05,
750
+ "loss": 0.4433,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.4983698183511877,
755
+ "grad_norm": 1.0614931500809168,
756
+ "learning_rate": 4.864060072501295e-05,
757
+ "loss": 0.4509,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.5030274802049371,
762
+ "grad_norm": 0.6656921373680668,
763
+ "learning_rate": 4.857586742620404e-05,
764
+ "loss": 0.4526,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.5076851420586865,
769
+ "grad_norm": 0.761135804704884,
770
+ "learning_rate": 4.8511134127395134e-05,
771
+ "loss": 0.4428,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.5123428039124359,
776
+ "grad_norm": 0.7524291911003331,
777
+ "learning_rate": 4.844640082858623e-05,
778
+ "loss": 0.4559,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.5170004657661854,
783
+ "grad_norm": 0.7643694469846594,
784
+ "learning_rate": 4.838166752977732e-05,
785
+ "loss": 0.4441,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.5216581276199348,
790
+ "grad_norm": 0.6727074125902812,
791
+ "learning_rate": 4.831693423096841e-05,
792
+ "loss": 0.4482,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.5263157894736842,
797
+ "grad_norm": 0.6080795466448415,
798
+ "learning_rate": 4.82522009321595e-05,
799
+ "loss": 0.4464,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.5309734513274337,
804
+ "grad_norm": 0.7154575256811082,
805
+ "learning_rate": 4.81874676333506e-05,
806
+ "loss": 0.4456,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.5356311131811831,
811
+ "grad_norm": 0.5881145419877987,
812
+ "learning_rate": 4.812273433454169e-05,
813
+ "loss": 0.4429,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.5402887750349324,
818
+ "grad_norm": 0.5629504481988451,
819
+ "learning_rate": 4.8058001035732785e-05,
820
+ "loss": 0.4428,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.5449464368886818,
825
+ "grad_norm": 0.6740507784348432,
826
+ "learning_rate": 4.799326773692387e-05,
827
+ "loss": 0.4389,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.5496040987424313,
832
+ "grad_norm": 0.5590413217515213,
833
+ "learning_rate": 4.792853443811497e-05,
834
+ "loss": 0.4543,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.5542617605961807,
839
+ "grad_norm": 0.648175325079465,
840
+ "learning_rate": 4.7863801139306064e-05,
841
+ "loss": 0.4446,
842
+ "step": 595
843
+ },
844
+ {
845
+ "epoch": 0.5589194224499301,
846
+ "grad_norm": 0.6553497135224098,
847
+ "learning_rate": 4.779906784049715e-05,
848
+ "loss": 0.4501,
849
+ "step": 600
850
+ },
851
+ {
852
+ "epoch": 0.5635770843036796,
853
+ "grad_norm": 0.6606737255970081,
854
+ "learning_rate": 4.773433454168825e-05,
855
+ "loss": 0.4256,
856
+ "step": 605
857
+ },
858
+ {
859
+ "epoch": 0.568234746157429,
860
+ "grad_norm": 0.7570935534531892,
861
+ "learning_rate": 4.766960124287934e-05,
862
+ "loss": 0.4434,
863
+ "step": 610
864
+ },
865
+ {
866
+ "epoch": 0.5728924080111784,
867
+ "grad_norm": 0.6404868107239774,
868
+ "learning_rate": 4.760486794407043e-05,
869
+ "loss": 0.4368,
870
+ "step": 615
871
+ },
872
+ {
873
+ "epoch": 0.5775500698649279,
874
+ "grad_norm": 0.6133747116202044,
875
+ "learning_rate": 4.754013464526152e-05,
876
+ "loss": 0.4389,
877
+ "step": 620
878
+ },
879
+ {
880
+ "epoch": 0.5822077317186772,
881
+ "grad_norm": 1.0158420393440462,
882
+ "learning_rate": 4.747540134645262e-05,
883
+ "loss": 0.4492,
884
+ "step": 625
885
+ },
886
+ {
887
+ "epoch": 0.5868653935724266,
888
+ "grad_norm": 0.6424938062971148,
889
+ "learning_rate": 4.741066804764371e-05,
890
+ "loss": 0.4364,
891
+ "step": 630
892
+ },
893
+ {
894
+ "epoch": 0.5915230554261761,
895
+ "grad_norm": 0.5587540204090086,
896
+ "learning_rate": 4.73459347488348e-05,
897
+ "loss": 0.4353,
898
+ "step": 635
899
+ },
900
+ {
901
+ "epoch": 0.5961807172799255,
902
+ "grad_norm": 0.710771955315232,
903
+ "learning_rate": 4.7281201450025894e-05,
904
+ "loss": 0.4401,
905
+ "step": 640
906
+ },
907
+ {
908
+ "epoch": 0.6008383791336749,
909
+ "grad_norm": 0.8503719196899987,
910
+ "learning_rate": 4.721646815121699e-05,
911
+ "loss": 0.4401,
912
+ "step": 645
913
+ },
914
+ {
915
+ "epoch": 0.6054960409874243,
916
+ "grad_norm": 0.6213357524921049,
917
+ "learning_rate": 4.715173485240808e-05,
918
+ "loss": 0.4377,
919
+ "step": 650
920
+ },
921
+ {
922
+ "epoch": 0.6101537028411738,
923
+ "grad_norm": 0.728615015594888,
924
+ "learning_rate": 4.708700155359917e-05,
925
+ "loss": 0.4435,
926
+ "step": 655
927
+ },
928
+ {
929
+ "epoch": 0.6148113646949231,
930
+ "grad_norm": 0.69572702326182,
931
+ "learning_rate": 4.7022268254790266e-05,
932
+ "loss": 0.4438,
933
+ "step": 660
934
+ },
935
+ {
936
+ "epoch": 0.6194690265486725,
937
+ "grad_norm": 0.717769460394585,
938
+ "learning_rate": 4.695753495598136e-05,
939
+ "loss": 0.4382,
940
+ "step": 665
941
+ },
942
+ {
943
+ "epoch": 0.624126688402422,
944
+ "grad_norm": 0.6390733598139207,
945
+ "learning_rate": 4.689280165717245e-05,
946
+ "loss": 0.4419,
947
+ "step": 670
948
+ },
949
+ {
950
+ "epoch": 0.6287843502561714,
951
+ "grad_norm": 0.8175947498621025,
952
+ "learning_rate": 4.6828068358363545e-05,
953
+ "loss": 0.4338,
954
+ "step": 675
955
+ },
956
+ {
957
+ "epoch": 0.6334420121099208,
958
+ "grad_norm": 0.6392191276829822,
959
+ "learning_rate": 4.676333505955464e-05,
960
+ "loss": 0.437,
961
+ "step": 680
962
+ },
963
+ {
964
+ "epoch": 0.6380996739636703,
965
+ "grad_norm": 0.5385507245755475,
966
+ "learning_rate": 4.669860176074573e-05,
967
+ "loss": 0.448,
968
+ "step": 685
969
+ },
970
+ {
971
+ "epoch": 0.6427573358174197,
972
+ "grad_norm": 0.779484565903713,
973
+ "learning_rate": 4.6633868461936824e-05,
974
+ "loss": 0.4388,
975
+ "step": 690
976
+ },
977
+ {
978
+ "epoch": 0.6474149976711691,
979
+ "grad_norm": 0.609631979942144,
980
+ "learning_rate": 4.656913516312791e-05,
981
+ "loss": 0.4371,
982
+ "step": 695
983
+ },
984
+ {
985
+ "epoch": 0.6520726595249184,
986
+ "grad_norm": 0.6612175365081071,
987
+ "learning_rate": 4.650440186431901e-05,
988
+ "loss": 0.4346,
989
+ "step": 700
990
+ },
991
+ {
992
+ "epoch": 0.6567303213786679,
993
+ "grad_norm": 0.5776526816400351,
994
+ "learning_rate": 4.64396685655101e-05,
995
+ "loss": 0.4325,
996
+ "step": 705
997
+ },
998
+ {
999
+ "epoch": 0.6613879832324173,
1000
+ "grad_norm": 0.6777612372991866,
1001
+ "learning_rate": 4.637493526670119e-05,
1002
+ "loss": 0.4433,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "epoch": 0.6660456450861667,
1007
+ "grad_norm": 0.652431971316431,
1008
+ "learning_rate": 4.631020196789229e-05,
1009
+ "loss": 0.4383,
1010
+ "step": 715
1011
+ },
1012
+ {
1013
+ "epoch": 0.6707033069399162,
1014
+ "grad_norm": 0.8345742527824963,
1015
+ "learning_rate": 4.624546866908338e-05,
1016
+ "loss": 0.4297,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "epoch": 0.6753609687936656,
1021
+ "grad_norm": 0.5978893188286112,
1022
+ "learning_rate": 4.618073537027447e-05,
1023
+ "loss": 0.4353,
1024
+ "step": 725
1025
+ },
1026
+ {
1027
+ "epoch": 0.680018630647415,
1028
+ "grad_norm": 0.8328268112464421,
1029
+ "learning_rate": 4.611600207146556e-05,
1030
+ "loss": 0.4421,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "epoch": 0.6846762925011645,
1035
+ "grad_norm": 0.7087213010225971,
1036
+ "learning_rate": 4.605126877265666e-05,
1037
+ "loss": 0.4304,
1038
+ "step": 735
1039
+ },
1040
+ {
1041
+ "epoch": 0.6893339543549138,
1042
+ "grad_norm": 0.6869314447013355,
1043
+ "learning_rate": 4.598653547384775e-05,
1044
+ "loss": 0.4347,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "epoch": 0.6939916162086632,
1049
+ "grad_norm": 0.6167757431721599,
1050
+ "learning_rate": 4.592180217503884e-05,
1051
+ "loss": 0.4312,
1052
+ "step": 745
1053
+ },
1054
+ {
1055
+ "epoch": 0.6986492780624126,
1056
+ "grad_norm": 0.7676543887073451,
1057
+ "learning_rate": 4.585706887622993e-05,
1058
+ "loss": 0.4393,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 0.7033069399161621,
1063
+ "grad_norm": 0.6961688773290436,
1064
+ "learning_rate": 4.5792335577421026e-05,
1065
+ "loss": 0.4295,
1066
+ "step": 755
1067
+ },
1068
+ {
1069
+ "epoch": 0.7079646017699115,
1070
+ "grad_norm": 0.5967737066278368,
1071
+ "learning_rate": 4.572760227861212e-05,
1072
+ "loss": 0.4317,
1073
+ "step": 760
1074
+ },
1075
+ {
1076
+ "epoch": 0.7126222636236609,
1077
+ "grad_norm": 0.5577548927242444,
1078
+ "learning_rate": 4.566286897980321e-05,
1079
+ "loss": 0.4388,
1080
+ "step": 765
1081
+ },
1082
+ {
1083
+ "epoch": 0.7172799254774104,
1084
+ "grad_norm": 0.6798109409577441,
1085
+ "learning_rate": 4.5598135680994305e-05,
1086
+ "loss": 0.438,
1087
+ "step": 770
1088
+ },
1089
+ {
1090
+ "epoch": 0.7219375873311598,
1091
+ "grad_norm": 0.7079083857791663,
1092
+ "learning_rate": 4.55334023821854e-05,
1093
+ "loss": 0.4266,
1094
+ "step": 775
1095
+ },
1096
+ {
1097
+ "epoch": 0.7265952491849091,
1098
+ "grad_norm": 0.8509226139438899,
1099
+ "learning_rate": 4.546866908337649e-05,
1100
+ "loss": 0.4427,
1101
+ "step": 780
1102
+ },
1103
+ {
1104
+ "epoch": 0.7312529110386586,
1105
+ "grad_norm": 0.7242979399552838,
1106
+ "learning_rate": 4.5403935784567584e-05,
1107
+ "loss": 0.4362,
1108
+ "step": 785
1109
+ },
1110
+ {
1111
+ "epoch": 0.735910572892408,
1112
+ "grad_norm": 0.5877311409433356,
1113
+ "learning_rate": 4.533920248575868e-05,
1114
+ "loss": 0.4284,
1115
+ "step": 790
1116
+ },
1117
+ {
1118
+ "epoch": 0.7405682347461574,
1119
+ "grad_norm": 0.6078912772108137,
1120
+ "learning_rate": 4.527446918694977e-05,
1121
+ "loss": 0.4347,
1122
+ "step": 795
1123
+ },
1124
+ {
1125
+ "epoch": 0.7452258965999069,
1126
+ "grad_norm": 0.5476766413302819,
1127
+ "learning_rate": 4.520973588814086e-05,
1128
+ "loss": 0.4308,
1129
+ "step": 800
1130
+ },
1131
+ {
1132
+ "epoch": 0.7498835584536563,
1133
+ "grad_norm": 0.5195378720227425,
1134
+ "learning_rate": 4.5145002589331956e-05,
1135
+ "loss": 0.4453,
1136
+ "step": 805
1137
+ },
1138
+ {
1139
+ "epoch": 0.7545412203074057,
1140
+ "grad_norm": 0.7360682617560098,
1141
+ "learning_rate": 4.508026929052305e-05,
1142
+ "loss": 0.431,
1143
+ "step": 810
1144
+ },
1145
+ {
1146
+ "epoch": 0.759198882161155,
1147
+ "grad_norm": 0.5685816437073101,
1148
+ "learning_rate": 4.501553599171414e-05,
1149
+ "loss": 0.4342,
1150
+ "step": 815
1151
+ },
1152
+ {
1153
+ "epoch": 0.7638565440149045,
1154
+ "grad_norm": 0.5972759336495264,
1155
+ "learning_rate": 4.495080269290523e-05,
1156
+ "loss": 0.4336,
1157
+ "step": 820
1158
+ },
1159
+ {
1160
+ "epoch": 0.7685142058686539,
1161
+ "grad_norm": 0.6728421551142247,
1162
+ "learning_rate": 4.488606939409633e-05,
1163
+ "loss": 0.4226,
1164
+ "step": 825
1165
+ },
1166
+ {
1167
+ "epoch": 0.7731718677224033,
1168
+ "grad_norm": 0.5582332660093027,
1169
+ "learning_rate": 4.482133609528742e-05,
1170
+ "loss": 0.4302,
1171
+ "step": 830
1172
+ },
1173
+ {
1174
+ "epoch": 0.7778295295761528,
1175
+ "grad_norm": 0.6980425901666201,
1176
+ "learning_rate": 4.475660279647851e-05,
1177
+ "loss": 0.4372,
1178
+ "step": 835
1179
+ },
1180
+ {
1181
+ "epoch": 0.7824871914299022,
1182
+ "grad_norm": 0.7390227270424299,
1183
+ "learning_rate": 4.46918694976696e-05,
1184
+ "loss": 0.4232,
1185
+ "step": 840
1186
+ },
1187
+ {
1188
+ "epoch": 0.7871448532836516,
1189
+ "grad_norm": 0.6485234571078656,
1190
+ "learning_rate": 4.46271361988607e-05,
1191
+ "loss": 0.4284,
1192
+ "step": 845
1193
+ },
1194
+ {
1195
+ "epoch": 0.7918025151374011,
1196
+ "grad_norm": 0.6336992788450944,
1197
+ "learning_rate": 4.4562402900051786e-05,
1198
+ "loss": 0.4307,
1199
+ "step": 850
1200
+ },
1201
+ {
1202
+ "epoch": 0.7964601769911505,
1203
+ "grad_norm": 0.7410255325128174,
1204
+ "learning_rate": 4.449766960124288e-05,
1205
+ "loss": 0.4236,
1206
+ "step": 855
1207
+ },
1208
+ {
1209
+ "epoch": 0.8011178388448998,
1210
+ "grad_norm": 0.5276824982854947,
1211
+ "learning_rate": 4.443293630243397e-05,
1212
+ "loss": 0.4252,
1213
+ "step": 860
1214
+ },
1215
+ {
1216
+ "epoch": 0.8057755006986492,
1217
+ "grad_norm": 0.5896389602903055,
1218
+ "learning_rate": 4.436820300362507e-05,
1219
+ "loss": 0.4284,
1220
+ "step": 865
1221
+ },
1222
+ {
1223
+ "epoch": 0.8104331625523987,
1224
+ "grad_norm": 0.5253923050441579,
1225
+ "learning_rate": 4.430346970481616e-05,
1226
+ "loss": 0.4227,
1227
+ "step": 870
1228
+ },
1229
+ {
1230
+ "epoch": 0.8150908244061481,
1231
+ "grad_norm": 0.5344210226388759,
1232
+ "learning_rate": 4.423873640600725e-05,
1233
+ "loss": 0.4321,
1234
+ "step": 875
1235
+ },
1236
+ {
1237
+ "epoch": 0.8197484862598975,
1238
+ "grad_norm": 0.5189955942586891,
1239
+ "learning_rate": 4.4174003107198344e-05,
1240
+ "loss": 0.4164,
1241
+ "step": 880
1242
+ },
1243
+ {
1244
+ "epoch": 0.824406148113647,
1245
+ "grad_norm": 0.505727185520852,
1246
+ "learning_rate": 4.410926980838944e-05,
1247
+ "loss": 0.4311,
1248
+ "step": 885
1249
+ },
1250
+ {
1251
+ "epoch": 0.8290638099673964,
1252
+ "grad_norm": 0.6952374910519269,
1253
+ "learning_rate": 4.404453650958053e-05,
1254
+ "loss": 0.4298,
1255
+ "step": 890
1256
+ },
1257
+ {
1258
+ "epoch": 0.8337214718211458,
1259
+ "grad_norm": 0.6334651402321975,
1260
+ "learning_rate": 4.397980321077162e-05,
1261
+ "loss": 0.4302,
1262
+ "step": 895
1263
+ },
1264
+ {
1265
+ "epoch": 0.8383791336748952,
1266
+ "grad_norm": 0.5871993814882748,
1267
+ "learning_rate": 4.3915069911962716e-05,
1268
+ "loss": 0.4243,
1269
+ "step": 900
1270
+ },
1271
+ {
1272
+ "epoch": 0.8430367955286446,
1273
+ "grad_norm": 0.562675211982263,
1274
+ "learning_rate": 4.385033661315381e-05,
1275
+ "loss": 0.4282,
1276
+ "step": 905
1277
+ },
1278
+ {
1279
+ "epoch": 0.847694457382394,
1280
+ "grad_norm": 0.55189342404869,
1281
+ "learning_rate": 4.37856033143449e-05,
1282
+ "loss": 0.4342,
1283
+ "step": 910
1284
+ },
1285
+ {
1286
+ "epoch": 0.8523521192361434,
1287
+ "grad_norm": 0.7717927793072482,
1288
+ "learning_rate": 4.3720870015535995e-05,
1289
+ "loss": 0.4262,
1290
+ "step": 915
1291
+ },
1292
+ {
1293
+ "epoch": 0.8570097810898929,
1294
+ "grad_norm": 0.545706766656389,
1295
+ "learning_rate": 4.365613671672709e-05,
1296
+ "loss": 0.4334,
1297
+ "step": 920
1298
+ },
1299
+ {
1300
+ "epoch": 0.8616674429436423,
1301
+ "grad_norm": 0.7308396494889845,
1302
+ "learning_rate": 4.359140341791818e-05,
1303
+ "loss": 0.4276,
1304
+ "step": 925
1305
+ },
1306
+ {
1307
+ "epoch": 0.8663251047973917,
1308
+ "grad_norm": 0.6334665220388306,
1309
+ "learning_rate": 4.352667011910927e-05,
1310
+ "loss": 0.4289,
1311
+ "step": 930
1312
+ },
1313
+ {
1314
+ "epoch": 0.8709827666511412,
1315
+ "grad_norm": 0.5789727565447382,
1316
+ "learning_rate": 4.346193682030037e-05,
1317
+ "loss": 0.4177,
1318
+ "step": 935
1319
+ },
1320
+ {
1321
+ "epoch": 0.8756404285048905,
1322
+ "grad_norm": 0.6071364036108049,
1323
+ "learning_rate": 4.339720352149146e-05,
1324
+ "loss": 0.4187,
1325
+ "step": 940
1326
+ },
1327
+ {
1328
+ "epoch": 0.8802980903586399,
1329
+ "grad_norm": 0.48355618067734446,
1330
+ "learning_rate": 4.3332470222682546e-05,
1331
+ "loss": 0.4222,
1332
+ "step": 945
1333
+ },
1334
+ {
1335
+ "epoch": 0.8849557522123894,
1336
+ "grad_norm": 0.757016952941287,
1337
+ "learning_rate": 4.326773692387364e-05,
1338
+ "loss": 0.4149,
1339
+ "step": 950
1340
+ },
1341
+ {
1342
+ "epoch": 0.8896134140661388,
1343
+ "grad_norm": 0.5970956354199685,
1344
+ "learning_rate": 4.320300362506474e-05,
1345
+ "loss": 0.4285,
1346
+ "step": 955
1347
+ },
1348
+ {
1349
+ "epoch": 0.8942710759198882,
1350
+ "grad_norm": 1.7486796656102368,
1351
+ "learning_rate": 4.313827032625583e-05,
1352
+ "loss": 0.4328,
1353
+ "step": 960
1354
+ },
1355
+ {
1356
+ "epoch": 0.8989287377736377,
1357
+ "grad_norm": 0.676896991938164,
1358
+ "learning_rate": 4.307353702744692e-05,
1359
+ "loss": 0.4278,
1360
+ "step": 965
1361
+ },
1362
+ {
1363
+ "epoch": 0.9035863996273871,
1364
+ "grad_norm": 0.5343157092353157,
1365
+ "learning_rate": 4.300880372863801e-05,
1366
+ "loss": 0.4298,
1367
+ "step": 970
1368
+ },
1369
+ {
1370
+ "epoch": 0.9082440614811365,
1371
+ "grad_norm": 0.6312289170160827,
1372
+ "learning_rate": 4.294407042982911e-05,
1373
+ "loss": 0.4237,
1374
+ "step": 975
1375
+ },
1376
+ {
1377
+ "epoch": 0.9129017233348858,
1378
+ "grad_norm": 0.7628441977751337,
1379
+ "learning_rate": 4.28793371310202e-05,
1380
+ "loss": 0.4266,
1381
+ "step": 980
1382
+ },
1383
+ {
1384
+ "epoch": 0.9175593851886353,
1385
+ "grad_norm": 1.0298339126452174,
1386
+ "learning_rate": 4.281460383221129e-05,
1387
+ "loss": 0.4308,
1388
+ "step": 985
1389
+ },
1390
+ {
1391
+ "epoch": 0.9222170470423847,
1392
+ "grad_norm": 0.7772941072113776,
1393
+ "learning_rate": 4.274987053340238e-05,
1394
+ "loss": 0.4042,
1395
+ "step": 990
1396
+ },
1397
+ {
1398
+ "epoch": 0.9268747088961341,
1399
+ "grad_norm": 0.8073817232990661,
1400
+ "learning_rate": 4.2685137234593476e-05,
1401
+ "loss": 0.4195,
1402
+ "step": 995
1403
+ },
1404
+ {
1405
+ "epoch": 0.9315323707498836,
1406
+ "grad_norm": 0.7213209273575877,
1407
+ "learning_rate": 4.262040393578457e-05,
1408
+ "loss": 0.4224,
1409
+ "step": 1000
1410
+ },
1411
+ {
1412
+ "epoch": 0.936190032603633,
1413
+ "grad_norm": 0.7416359254585871,
1414
+ "learning_rate": 4.255567063697566e-05,
1415
+ "loss": 0.4312,
1416
+ "step": 1005
1417
+ },
1418
+ {
1419
+ "epoch": 0.9408476944573824,
1420
+ "grad_norm": 0.527102694728885,
1421
+ "learning_rate": 4.2490937338166755e-05,
1422
+ "loss": 0.4201,
1423
+ "step": 1010
1424
+ },
1425
+ {
1426
+ "epoch": 0.9455053563111319,
1427
+ "grad_norm": 0.5594511470545082,
1428
+ "learning_rate": 4.242620403935785e-05,
1429
+ "loss": 0.4224,
1430
+ "step": 1015
1431
+ },
1432
+ {
1433
+ "epoch": 0.9501630181648812,
1434
+ "grad_norm": 0.5965418648993862,
1435
+ "learning_rate": 4.236147074054894e-05,
1436
+ "loss": 0.4309,
1437
+ "step": 1020
1438
+ },
1439
+ {
1440
+ "epoch": 0.9548206800186306,
1441
+ "grad_norm": 0.5450943367909993,
1442
+ "learning_rate": 4.2296737441740034e-05,
1443
+ "loss": 0.4227,
1444
+ "step": 1025
1445
+ },
1446
+ {
1447
+ "epoch": 0.95947834187238,
1448
+ "grad_norm": 0.7935428149469217,
1449
+ "learning_rate": 4.223200414293113e-05,
1450
+ "loss": 0.422,
1451
+ "step": 1030
1452
+ },
1453
+ {
1454
+ "epoch": 0.9641360037261295,
1455
+ "grad_norm": 0.48700743765986526,
1456
+ "learning_rate": 4.216727084412222e-05,
1457
+ "loss": 0.4186,
1458
+ "step": 1035
1459
+ },
1460
+ {
1461
+ "epoch": 0.9687936655798789,
1462
+ "grad_norm": 0.7728666319795747,
1463
+ "learning_rate": 4.2102537545313306e-05,
1464
+ "loss": 0.4177,
1465
+ "step": 1040
1466
+ },
1467
+ {
1468
+ "epoch": 0.9734513274336283,
1469
+ "grad_norm": 0.6153911472582105,
1470
+ "learning_rate": 4.2037804246504406e-05,
1471
+ "loss": 0.4185,
1472
+ "step": 1045
1473
+ },
1474
+ {
1475
+ "epoch": 0.9781089892873778,
1476
+ "grad_norm": 0.4852026029806901,
1477
+ "learning_rate": 4.19730709476955e-05,
1478
+ "loss": 0.4185,
1479
+ "step": 1050
1480
+ },
1481
+ {
1482
+ "epoch": 0.9827666511411272,
1483
+ "grad_norm": 0.4462069599855887,
1484
+ "learning_rate": 4.190833764888659e-05,
1485
+ "loss": 0.4193,
1486
+ "step": 1055
1487
+ },
1488
+ {
1489
+ "epoch": 0.9874243129948765,
1490
+ "grad_norm": 0.5229879709804952,
1491
+ "learning_rate": 4.184360435007768e-05,
1492
+ "loss": 0.4221,
1493
+ "step": 1060
1494
+ },
1495
+ {
1496
+ "epoch": 0.992081974848626,
1497
+ "grad_norm": 0.9581807172329343,
1498
+ "learning_rate": 4.177887105126878e-05,
1499
+ "loss": 0.4193,
1500
+ "step": 1065
1501
+ },
1502
+ {
1503
+ "epoch": 0.9967396367023754,
1504
+ "grad_norm": 0.6118951656784746,
1505
+ "learning_rate": 4.171413775245987e-05,
1506
+ "loss": 0.411,
1507
+ "step": 1070
1508
+ }
1509
+ ],
1510
+ "logging_steps": 5,
1511
+ "max_steps": 4292,
1512
+ "num_input_tokens_seen": 0,
1513
+ "num_train_epochs": 4,
1514
+ "save_steps": 500,
1515
+ "stateful_callbacks": {
1516
+ "TrainerControl": {
1517
+ "args": {
1518
+ "should_epoch_stop": false,
1519
+ "should_evaluate": false,
1520
+ "should_log": false,
1521
+ "should_save": true,
1522
+ "should_training_stop": false
1523
+ },
1524
+ "attributes": {}
1525
+ }
1526
+ },
1527
+ "total_flos": 9.201439617780285e+17,
1528
+ "train_batch_size": 1,
1529
+ "trial_name": null,
1530
+ "trial_params": null
1531
+ }
checkpoint-1074/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e05f31de2ff1ea05b6b40008fe030314954a34489cd1e304ab649211e4763d9
3
+ size 7416
checkpoint-1074/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1074/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)